КМ.72

Задача из журнала «Квант» №72

Условие:
Пусть p — произвольное вещественное число. Найдите все такие x, что сумма кубических корней из чисел 1 – x и 1 + x равна p.

Тесты:

Входные данные Выходные данные
1 0.6 No solutions
2 1.4 x1 = -0.997217
x2 = 0.997217
3 2 x=0
4 1.79 x1 = -0.814516
x2 = 0.814516

Код

Решение:
Рассмотрев условие, приходим к такому уравнению [latex] \sqrt[3]{\left(1+x \right)}+\sqrt[3]{\left(1-x \right)}=p [/latex] , где p — параметр, который будет задаваться на входе.Ответы для р будут существовать на промежутке [latex] \left[\sqrt[3]{2}; 2\right] [/latex] . Если р не входит в промежуток, то выводим «нет решений». Если р=2, то оба корня совпадут, по этому выводим один «х=0». Для остальных случаев ответом будет два корня.

Ссылки:
Решение на ideone http://ideone.com/A8DXC9
Условие http://www.kvant.info/zkm_1971.htm
Решение wolfram http://www.wolframalpha.com/input/?i=(1%2Bx)%5E(1%2F3)+%2B+(1-x)%5E(1%2F3)+%3D+p

ML 27. Угол между векторами

Условие:

Найти угол в градусах, минутах и секундах между векторами [latex]\overrightarrow{a}=(a_x,a_y,a_z)[/latex] и [latex]\overrightarrow{b}=(b_x,b_y,b_z)[/latex].

Входные данные:

Координаты векторов [latex] \overrightarrow{a}[/latex] и [latex]\overrightarrow{b}[/latex].

Выходные данные:

Угол в градусах, минутах и секундах.

Тесты

Входные данные Выходные данные
1 1 1 4 20 31 12 53° 1′ 23″
2 1 61 12 1 11 1 7° 17′ 33″
3 1 0 0 0 0 1 90° 0′ 0″
4 -1 0 1 -2 2 1 44° 59′ 59″

Код

 

Решение:

Для решения данной задачи необходимо найти косинус между векторами, а после перевести радианы в градусы.
Косинус между векторами найдем по формуле [latex] \cos \alpha = \frac{\vec{a}\vec{b}}{\left|\vec{a} \right|\left|\vec{b} \right|}[/latex] .
Скалярное произведение найдем по формуле [latex] \left|\vec{a} \right| \left|\vec{b} \right|={a}_{x}{b}_{x}+{a}_{y}{b}_{y}+{a}_{z}{b}_{z} [/latex] .
Модуль вектора найдем по формуле [latex] \left|\vec{a} \right| = \sqrt{ {{a}_{x}}^{2}+{{a}_{y}}^{2}+{{a}_{z}}^{2} } [/latex] ; [latex] \left|\vec{b} \right| = \sqrt{ {{b}_{x}}^{2}+{{b}_{y}}^{2}+{{b}_{z}}^{2} } [/latex] .
Затем переведем радианы в градусы по формуле [latex] \frac{180}{ \arccos (-1.0) \arccos (\cos \alpha )} [/latex] .
[latex] \arccos (-1.0) [/latex] это число [latex] \pi [/latex] .

Ссылки:

Решение задачи на ideone.com: http://ideone.com/Gx3IVU
Косинус угла между векторами: http://ru.onlinemschool.com/math/library/vector/angl/
Скалярное произведение векторов: http://ru.onlinemschool.com/math/library/vector/multiply/
Модуль вектора: http://ru.onlinemschool.com/math/library/vector/length/
Перевод радиан в градусы: http://www.cleverstudents.ru/trigonometry/radian_and_degree_conversion.html
Условие задачи: http://cpp.mazurok.com/mtasks/