D2549. Сумма ряда

Условие задачи:
Найти сумму сходящегося ряда:
[latex]\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + … + \frac{1}{n(n + 1)} + …[/latex]

Входные данные:
Целое число [latex]n[/latex] — номер искомой частичной суммы.

Выходные данные:
Искомая частичная сумма.

Тесты:

Вход Выход
1 1 0.5
2 500 0.998004
3 100000 0.999965

Код на языке C++ (первый вариант):

Код на языке Java (первый вариант):

Код на языке C++ (второй вариант):

Код на языке Java (второй вариант):

Решения:
Вариант первый (решение с циклом): Зададим цикл с счетчиком [latex]i[/latex] от 1 до заданного пользователем числа [latex]n.[/latex] Именно такое количество необходимых слагаемых [latex]\frac{1}{n(n + 1)}[/latex] будет найдено на каждом шаге цикла для последующего суммирования и нахождения искомой частичной суммы.

Вариант второй (решение без цикла): Ряд сводится к ряду: [latex](1 — \frac{1}{2}) + (\frac{1}{2} — \frac{1}{3}) + … + (\frac{1}{n} — \frac{1}{n + 1})[/latex]. От сюда имеем: [latex]1 — \frac{1}{n + 1}.[/latex]

Ссылки:
Условие задачи (стр.248).
Первый вариант C++ .
Первый вариант Java .
Второй вариант C++ .
Второй вариант Java .

A328

Задача:
Найти [latex]100[/latex] первых простых чисел.
Тесты:
Обобщим задачу и для тестов используем разное количество первых простых чисел.

Вход Выход
1 25 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
2 50 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
3 100 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541

Код:

Решение:
Первое простое число печатаем сразу, остальные [latex]n-1[/latex] будем проверять циклами: проверим нечетные числа на нечетные делители(пройдём цикл по делителям). Число простое, если нет делителей. Если не простое, то переходим к следующему. Каждое простое число печатаем до [latex]n[/latex] включительно.
Ссылки:

  1.  Условие задачи.
  2.  Онлайн компилятор ideone.

A60г

Задача:
Пусть [latex]D[/latex] — заштрихованная часть плоскости и пусть u определяется по [latex]x[/latex] и [latex]y[/latex] следующим образом: [latex] u=\begin{cases}x^{2}-1, ; \text{ if } (x, y)\in D \\sqrt{\left| x-1 \right| } ; \text{ another case }\end{cases}[/latex] (запись [latex] (x, y)\in D [/latex] означает, что точка с координатами [latex]x, y[/latex] принадлежит [latex]D[/latex]).

Даны действительные числа [latex]x[/latex] и [latex]y.[/latex] Определить [latex]u.[/latex]

a60%d0%b3
Тесты:

Вход Выход
[latex]x[/latex] [latex]y[/latex] [latex]u[/latex]
1 0.3 0.3 0.836660
2 1 1 0.000000
3 2 2 1.000000
4 0 0 -1.000000

Код на языке C++:

Код на языке Java:

Решение:
Для решения задачи проверим не принадлежит ли выбранная точка полуплоскости [latex] y<0 [/latex].Затем следует проверить не лежит ли выбранная точка вне полукруга, радиус которого равен 1 . Следующим действием нужно проверить не находиться ли точка в вырезанной четвертине маленького круга, радиус которого равен 0.3 .
Ссылки:
Онлайн компилятор ideone C++ .
Онлайн компилятор ideone Java .

ML29. Площадь тетраэдра

Тетраэдр

Тетраэдр

Задача. Найти площадь полной поверхности тетраэдра три стороны которого образованы векторами [latex]\overrightarrow{a}=(a_x,a_y,a_z)[/latex], [latex] \overrightarrow{b}=(b_x,b_y,b_z)[/latex] и [latex]\overrightarrow{c}=(c_x,c_y,c_z)[/latex].
Тесты:

Вход Выход
[latex]a_x[/latex] [latex]a_y[/latex] [latex]a_z[/latex] [latex]b_x[/latex] [latex]b_y[/latex] [latex]b_z[/latex] [latex]c_x[/latex] [latex]c_y[/latex] [latex]c_z[/latex] [latex]S[/latex]
1 -3 3 3 3 -3 3 3 3 -3 69.3607
2 -1 1 1 1 -1 1 1 1 -1 7.70674
3 -2 2 2 2 -2 2 2 2 -2 30.827
4 0 0 1 1 0 0 1 1 -1 2.07313

Код на C++:

Код на Java:

Решение:
Координаты векторов находим по формуле:
[latex] \overrightarrow{A_2A_4}=(c_x-a_x,c_y-a_y,c_z-a_z) [/latex] здесь [latex] a_x, a_y, a_z[/latex] — координаты точки [latex]A_2[/latex]; [latex]c_x, c_y, c_z[/latex] — координаты точки [latex]A_4[/latex];
Таким же образом находим остальные координаты векторов.
Модули векторов (длина ребер пирамиды)
Длина вектора [latex]\overrightarrow{a}(a_x;a_y;a_z)[/latex] выражается через его координаты формулой:
[latex] \left| \overrightarrow{A_1A_2} \right| =\sqrt { ({ a_x) }^{ 2 }+({ a_y) }^{ 2 }+({ a_z) }^{ 2 } } [/latex];
Таким же способом находим другие модули векторов.
Площадь грани можно найти по формуле:
[latex] s_1=\frac { 1 }{ 2 } \vec{A_1} \times \vec{A_2} \sin \angle{A_2A_3} [/latex] где
[latex] \sin \angle{ A_2A_3 =\sqrt { 1-{ (\cos \angle{ A_2A_3) } }^{ 2 } } } [/latex] Так же будем находить и другие.
Найдем угол между ребрами [latex] A_1A_2(a_x;a_y;a_z) [/latex] и [latex] A_1A_3(b_x;b_y;b_z) [/latex]:
[latex] \cos \angle{ A_2A_3 =\frac { a_x b_x+a_y b_y+a_z b_z }{ \left| A_2A_3 \right| } } [/latex] Так мы найдём и другие 3 площади граней.
Площадь полной поверхности.
[latex] s=s_1+s_2+s_3+s_4. [/latex]

Ссылки:

Онлайн компилятор ideone C++ .
Онлайн компилятор ideone Java .
Онлайн калькулятор .