e-olymp 481. И опять: сколько можно?

Задача

Задано натуральное число [latex]N[/latex]. От данного числа вычтем сумму цифр этого числа, от полученного числа опять вычтем сумму цифр и т.д. Данную операцию будем продолжать до тех пор, пока полученное число положительно. Сколько раз будем выполнять данную операцию?

Входные данные

Во входной строке находится число [latex]N[/latex], которое не превышает [latex]2147483647[/latex].

Выходные данные

Количество выполненных операций.

Тесты

Входные данные Выходные данные
[latex]23[/latex] [latex]3[/latex]
[latex]55555[/latex] [latex]3000[/latex]
[latex]1234567[/latex] [latex]49877[/latex]
[latex]999999999[/latex] [latex]25632473[/latex]
[latex]2147483647[/latex] [latex]54682584[/latex]

Код программы

Решение задачи

Данную задачу можно решить, вычитая от данного числа [latex]N[/latex] суммы цифр, пока само число не станет равным [latex]0[/latex], с помощью циклов. Но этого нам не позволяет ограничение по времени.
Поэтому мы найдем максимально возможное число, которое мы можем получить при вычитании из больших чисел сумм цифр и которое проходит по времени. Это число — [latex]999999999[/latex] (найдено экспериментальным путем). Из него необходимо вычесть суммы цифр [latex]25632473[/latex] раз, чтобы получился [latex]0[/latex].
Тогда из чисел, которые больше данного, достаточно вычитать суммы цифр, пока они не станут равными [latex]999999999[/latex] и прибавить к количеству вычитаний [latex]25632473[/latex].
Если [latex]N[/latex] меньше найденного нами числа, то можно из него просто вычитать суммы цифр, пока оно не станет равным [latex]0[/latex].

Ссылки

Условие задачи на e-olymp
Код решения

e-olymp 74. Паук и муха — 2

Задача

В пустой прямоугольной комнате длины [latex]А[/latex], ширины [latex]В[/latex] и высоты [latex]С[/latex] муха упала на пол и уснула. Паук, находящийся на одной из стен, или на полу, или на потолке, начал двигаться к ней по кратчайшему пути.

На какое расстояние он при этом переместится? Известно, что паук может передвигаться только по поверхности комнаты или же спускаться на паутине с потолка на пол, но только под прямым углом.

Входные данные

В первой строке заданы размеры комнаты [latex]A[/latex], [latex]B[/latex], [latex]C[/latex]. Во второй строке – координаты мухи на полу [latex]X1[/latex], [latex]Y1[/latex], [latex](0 ≤ X1 ≤ A[/latex], [latex]0 ≤ Y1 ≤ B)[/latex]. В третьей строке – координаты паука [latex]X2[/latex], [latex]Y2[/latex], [latex]Z2[/latex], [latex](0 ≤ X2 ≤ A[/latex], [latex]0 ≤ Y2 ≤ B[/latex], [latex]0 ≤ Z2 ≤ C)[/latex]. Все входные данные – целые не отрицательные числа, не превосходящие [latex]500[/latex].

Выходные данные

Одно число – расстояние, на которое переместится паук, посчитанное с точностью до 2-х знаков после запятой.

Тесты

Входные данные Выходные данные
[latex]A[/latex] [latex]B[/latex] [latex]C[/latex] [latex]X1[/latex] [latex]Y1[/latex] [latex]X2[/latex] [latex]Y2[/latex] [latex]Z2[/latex] [latex]S[/latex]
[latex]4[/latex] [latex]7[/latex] [latex]3[/latex] [latex]2[/latex] [latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex] [latex]8.06[/latex]
[latex]145[/latex] [latex]26[/latex] [latex]306[/latex] [latex]12[/latex] [latex]24[/latex] [latex]0[/latex] [latex]0[/latex] [latex]305[/latex] [latex]309.34[/latex]
[latex]26[/latex] [latex]18[/latex] [latex]53[/latex] [latex]24[/latex] [latex]15[/latex] [latex]24[/latex] [latex]1[/latex] [latex]53[/latex] [latex]58.52[/latex]
[latex]89[/latex] [latex]89[/latex] [latex]189[/latex] [latex]12[/latex] [latex]24[/latex] [latex]0[/latex] [latex]89[/latex] [latex]16[/latex] [latex]70.77[/latex]
[latex]18[/latex] [latex]26[/latex] [latex]145[/latex] [latex]14[/latex] [latex]2[/latex] [latex]17[/latex] [latex]26[/latex] [latex]141[/latex] [latex]147.14[/latex]

Код программы

Решение задачи

Данная задача решается с помощью «разверток» комнаты: переход от трёхмерного пространства к двумерному.
Вид комнаты:

Рассмотрим такие случаи:

  1. Паук находится на полу ([latex]Z_2 = 0[/latex]);
  2. Паук находится на одной из стенок ([latex]X_2 = 0[/latex], или [latex]X_2 = A[/latex], или [latex]Y_2 = 0[/latex], или [latex]Y_2 = B[/latex] и [latex]Z_2 \neq 0[/latex]) либо на потолке ([latex]X_2 \neq 0[/latex], и [latex]X_2 \neq A[/latex], и [latex]Y_2 \neq 0[/latex], и [latex]Y_2 \neq B[/latex], и [latex]Z_2 = C[/latex]).

Первый случай тривиален и вычисляется по формуле [latex]\sqrt{(X_1 — X_2)^2 + (Y_1 — Y_2)^2}[/latex] с помощью функции [latex]distance[/latex].
В случае, когда паук сидит на стенке, мы можем построить 3 развертки:
Допустим, паук находится на левой боковой стенке ([latex]X_2 = 0[/latex]). Остальные случаи аналогичны этому.

  • Паук ползет по этой стенке, затем по полу. Тогда развертка будет такой:
  • Паук ползет через ближнюю к нам стенку и по полу. Тогда развертка следующая:
  • Аналогичен предыдущему случаю, только через дальнюю от нас стенку.

По этим разверткам мы можем вычислить координаты паука и кратчайшее расстояние от него до мухи с помощью функции [latex]distance[/latex]. Если же паук находится в одном из углов комнаты, то мы находим наименьшее расстояние из двух вариантов развертки.
Когда же паук сидит на потолке, не соприкасаясь ни с одной из стенок, у него есть 13 вариантов:

  • Паук спускается с потолка на паутине, затем ползет точно так же, как и в самом первом случае.
  • Паук ползет по потолку, по одной из стенок и по полу. Тогда развертка будет выглядеть следующим образом (потолок можно развернуть в 4 стороны — отсюда 4 случая):
  • Паук ползет по потолку, а затем по двум соседним стенкам и по полу. Таких случаев 8, поскольку порядок следования стенок, по которым тот ползет, также важен. Развертка одного из них:

По этим разверткам мы также можем вычислить координаты паука и кратчайшее расстояние от него до мухи с помощью функции [latex]distance[/latex].

Ссылки

Условие задачи на e-olymp
Задача Дьюдени о пауке и мухе
Код решения

e-olymp 8. Спички

Задача

Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости [latex]n[/latex] квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами – сами спички.

Напишите программу, которая по количеству квадратов [latex]n[/latex], которое необходимо составить, находит минимальное необходимое для этого количество спичек.

Входные данные

Одно целое число [latex]n[/latex] [latex](1 ≤ n ≤ 10^9)[/latex].

Выходные данные

Вывести минимальное количество спичек, требуемых для составления [latex]n[/latex] квадратов.

Тесты

Входные данные Выходные данные
[latex]1[/latex] [latex]4[/latex]
[latex]2[/latex] [latex]7[/latex]
[latex]4[/latex] [latex]12[/latex]
[latex]7[/latex] [latex]20[/latex]
[latex]150[/latex] [latex]325[/latex]
[latex]10000[/latex] [latex]20200[/latex]

Код программы

Решение задачи

Один квадрат можно составить из [latex]4[/latex] спичек. Два квадрата — из [latex]7[/latex] спичек. Очевидно, что квадраты следует располагать так, чтобы они образовывали прямоугольник, “близкий” к квадрату.
Например, на рисунке 1 мы использовали меньшее количество спичек, чем на рисунке 2, хотя количество квадратов одинаковое:

Зададим размеры прямоугольника. Пусть [latex]width = \sqrt n[/latex] — его ширина. Округлим значение [latex]width[/latex] к наибольшему целому числу, не превышающему данное. Тогда его длина будет [latex]length = \frac {n} {width}[/latex]. Если округлить значение [latex]length[/latex] к наибольшему целому числу, не превышающему данное, то мы сможем построить лишь те квадраты, которые входят в наш прямоугольник. Округляя же значение [latex]length[/latex] к наименьшему целому числу, которое не меньше данного, мы сможем достроить квадраты, не поместившиеся в наш прямоугольник.
Если отложить вниз количество спичек, равное [latex]width[/latex], и вправо — [latex]length[/latex], получается следующий рисунок (разумеется, количество отложенных спичек меняется в зависимости от [latex]n[/latex]):

Очевидно, что достроить треубемые квадраты можно, положив «уголки» из двух спичек, начиная с левого верхнего угла и двигаясь сверху вниз и слева направо.
«Уголок»:

Отсюда и получается формула: [latex]k = 2 \cdot n + length + width [/latex], где [latex]k[/latex] — количество спичек, требуемое в задаче.

Ссылки

Условие задачи на e-olymp
Код решения