e-olymp 72. Дорога домой

Задача

Бедный Иа

Бедный Иа

Возвращаясь домой, после захватывающей игры в гостях у Винни Пуха, ослик Иа решил немного прогуляться. Поскольку во время прогулки он все время думал о своем приближавшемся дне рождения, то не заметил, как заблудился. Известно, что ослик во время прогулки всегда передвигается по определенному алгоритму: в начале прогулки он всегда начинает движение на северо-восток, делает при этом один шаг (перемещаясь при этом в точку [latex]\left \langle 1,1 \right \rangle[/latex]), потом меняет направление и двигается на юго-восток, далее на юго-запад, на северо-запад и так далее. При каждом изменении направления ослик всегда делает на [latex]n[/latex] шагов больше, чем было сделано до изменения направления.

Когда ослик все же решил возвратится домой, то обнаружил, что зашел глубоко в лес. Надвигалась ночь и Иа захотел поскорее попасть домой. Помогите узнать, удастся ли сегодня ослику попасть домой до заката солнца, если известно, что солнце зайдет через [latex]t[/latex] часов, а скорость передвижения ослика [latex]v[/latex] шагов в час (длина шага у ослика постоянна). Известно, что движение ослик начинал из точки с координатами [latex]\left \langle 0,0 \right \rangle[/latex], а его дом расположен в точке [latex]\left \langle x_{h},y_{h} \right \rangle[/latex], и направление движения он менял [latex]k[/latex] раз.

Входные данные

В первой строке задано четыре целых числа [latex]n[/latex], [latex]k[/latex], [latex]t[/latex], [latex]v[/latex] [latex](0\leq n,k,t,v\leq 100)[/latex] . Во второй строке размещено два целых числа [latex]x_{h}[/latex], [latex]y_{h}[/latex] – координаты домика ослика [latex](-105\leq x_{h}, y_{h}\leq 105)[/latex] .

Выходные данные

Вывести Good night Ia, если ослик успеет дойти домой до заката солнца или Poor Ia в противоположном случае.

Тесты

Входные данные
Выходные данные
[latex]1[/latex] [latex]5[/latex] [latex]3[/latex] [latex]2[/latex]

 

[latex]5[/latex] [latex]7[/latex]
Good night Ia
[latex]5[/latex] [latex]2[/latex] [latex]3[/latex] [latex]9[/latex]

 

[latex]15[/latex] [latex]15[/latex]
Good night Ia
[latex]4[/latex] [latex]4[/latex] [latex]3[/latex] [latex]20[/latex]

 

[latex]105[/latex] [latex]-105[/latex]
Poor Ia
[latex]3[/latex] [latex]4[/latex] [latex]2[/latex] [latex]3[/latex]

 

[latex]40[/latex] [latex]-20[/latex]
Good night Ia
[latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex]

 

[latex]-24[/latex] [latex]0[/latex]
Poor Ia
[latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex]

 

[latex]-23[/latex] [latex]0[/latex]
Good night Ia

Код программы

Решение задачи

Разделим решение задачи на две части: поиск местоположения Иа после прогулки и расчет пути домой.
Имеем следующую формулу вычисления вектора нахождения Иа после прогулки:
[latex]\sum\limits_{i=0}^k f(i, n)[/latex], где [latex]n[/latex] — изменение количества шагов Иа в каждой итерации, [latex]k[/latex] — cколько раз он менял движение, и функции:

[latex]f(x,y) = \begin{cases} \left \langle1 + xy, 1 + xy\right \rangle & \textit{if } x\vdots 4 = 0 \\ \left \langle1 + xy, (-1) \cdot (1 + xy)\right \rangle & \textit{if } x\vdots 4 = 1 \\ \left \langle(-1) \cdot (1 + xy), (-1) \cdot (1 + xy)\right \rangle & \textit{if } x\vdots 4 = 2 \\ \left \langle(-1) \cdot (1 + xy), 1 + xy\right \rangle & \textit{if } x\vdots 4 = 3 \end{cases}[/latex]

То есть, результат функции [latex]f(x,y)[/latex] это вектор, на который передвинулся Иа в итерации номер [latex]x[/latex] с изменением шага [latex]y[/latex], а результат [latex]\sum\limits_{i=0}^k f(i, n)[/latex] — это вектор [latex]\left \langle a,b \right \rangle[/latex] местоположения Иа в конце прогулки. Теперь нужно посчитать расстояние между местоположением Иа и его домом. Считаем из вектора [latex]\left \langle a,b \right \rangle[/latex] и вектора [latex]\left \langle x_{h},y_{h} \right \rangle[/latex]:

[latex]\sqrt{(x_{h} — a)^2 + (y_{h} — b)^2}[/latex]

И считаем максимальное расстояние, которое может пройти Иа до заката солнца. Тут нужно учесть то, что скорость в условии измеряется в шагах в час, а шаг это расстояние между [latex]\left \langle 0,0 \right \rangle[/latex] и [latex]\left \langle 1,1 \right \rangle[/latex], то есть — [latex]\sqrt{2}[/latex].

[latex] \sqrt{2} tv[/latex]

Итого, выводим Good night Ia, если [latex]\sqrt{2} tv \geq \sqrt{(x_{h} — a)^2 + (y_{h} — b)^2}[/latex] и Poor Ia в противном случае.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 2071. Три грибника

Задача

Три грибника

Три грибника

Три грибника Петя, Вася и Николай, возвращаясь из лесу домой, решили устроить привал, а заодно и перекусить. Как это у нас принято, через некоторое время каждый начал сначала хвастаться своими сегодняшними успехами, а со временем, а так все трое были друзьями, то вскоре начали делить найденными ими грибы между собой и своими товарищами.

Сначала Пётр дал Васе и Николаю по столько грибов, сколько у них уже было. Николай быстро понял, что так будет не по-братски, и дал Василию и Петру по столько грибов, по сколько у них стало. Василий не мог отстать от сотоварищей и также дал каждому из друзей по столько грибов, сколько у них этому моменту имелось. И тут друзья с удивлением обнаружили, что у всех стало грибов поровну.

Сколько грибов было у каждого перед привалом, если известно, что все вместе они собрали [latex]n[/latex] грибов?

Входные данные

В единственной строке находится единственное натуральное число [latex]n[/latex] ([latex]n ≤ 30000[/latex]).

Выходные данные

В единственной строке вывести через пробел количество грибов перед привалом у Петра, Василия и Николая, соответственно. Гарантируется, что все входные данные корректны.

Тесты

Входные данные
Выходные данные
[latex]24[/latex] [latex]13[/latex] [latex]4[/latex] [latex]7[/latex]
[latex]48[/latex] [latex]26[/latex] [latex]8[/latex] [latex]14[/latex]
[latex]72[/latex] [latex]39[/latex] [latex]12[/latex] [latex]21[/latex]
[latex]96[/latex] [latex]52[/latex] [latex]16[/latex] [latex]28[/latex]
[latex]120[/latex] [latex]65[/latex] [latex]20[/latex] [latex]35[/latex]
[latex]144[/latex] [latex]78[/latex] [latex]24[/latex] [latex]42[/latex]

Код программы

Решение задачи

Представим нашу задачу в форме таблицы, строки которой будут соответствовать грибникам, а столбцы — количеству грибов у соответствующего грибника между обменами:

П.
[latex]x_{1}[/latex] [latex]x_{2} = x_{1} — y_{1} — z_{1}[/latex] [latex]x_{3} = 2 \cdot x_{2}[/latex] [latex]x_{4} = 2 \cdot x_{3}[/latex]
В.
[latex]y_{1}[/latex] [latex]y_{2} = 2 \cdot y_{1}[/latex] [latex]y_{3} = 2 \cdot y_{2}[/latex] [latex]y_{4} = y_{3} — x_{3} — z_{3}[/latex]
Н.
[latex]z_{1}[/latex] [latex]z_{2} = 2 \cdot z_{1}[/latex] [latex]z_{3} = z_{2} — x_{2} — y_{2}[/latex] [latex]z_{4} = 2 \cdot x_{3}[/latex]

По условию задачи [latex]x_{4} = y_{4} = z_{4} = \frac n 3[/latex]. Тогда выражением нужных корней и подстановкой известных считаем [latex]x_{1}[/latex], [latex]y_{1}[/latex] и [latex]z_{1}[/latex] начиная с правого столбца и двигаясь налево:

[latex]x_{3} = \frac {x_{4}}{2} = \frac {n}{6}[/latex]
[latex]z_{3} = \frac {z_{4}}{2} = \frac {n}{6}[/latex]
[latex]y_{3} = y_{4} + x_{3} + z_{3}= \frac {n}{3} + \frac {n}{6} + \frac {n}{6} = \frac {2 \cdot n}{6}[/latex]
[latex]x_{2} = \frac {x_3}{2} = \frac {n} {12}[/latex]
[latex]y_{2} = \frac {y_3}{2} = \frac {n}{3}[/latex]
[latex]z_{2} = z_{3} + y_{2} + x_{2} = \frac {n}{6} + \frac {n}{12} + \frac {n}{3} = \frac {7 \cdot n}{12}[/latex]
[latex]y_{1} = \frac {y_{2}}{2} = \frac {n}{6}[/latex]
[latex]z_{1} = \frac {z_2}{2} = \frac {7 \cdot n}{24}[/latex]
[latex]x_{1} = x_{2} + y_{1} + z_{1} = \frac {n}{12} + \frac {n}{6} + \frac {6 \cdot n}{12} = \frac {13 \cdot n}{24}[/latex]

Получили ответы: [latex]x_{1} = \frac {13 \cdot n}{24}[/latex],  [latex]y_{1} = \frac {n}{6}[/latex] и [latex]z_{1} = \frac {7 \cdot n}{24}[/latex]. Это и будет количество грибов соответственно у Пети, Васи и Николая в самом начале. Отсюда получаем итоговую формулу решения, указанную в коде программы.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com