e-olymp 48. Красные и синие квадраты

Задача

Петя и Вася готовились к контрольной работе по теме ”Периметр и площадь фигур”. Петя нарисовал геометрическую фигуру, закрасив на листе в клеточку некоторые клеточки синим цветом, а Вася вычислял периметр образованной фигуры и дорисовывал максимальное количество квадратов красным цветом таким образом, чтобы периметр новообразованной фигуры оставался таким же.
Напишите программу, которая по заданным координатам закрашенных синих квадратов найдет максимальное количество красных квадратов, которое можно дорисовать так, чтобы периметр новообразованной фигуры не изменился.

Входные данные

В первой строке находится количество синих квадратов $n$ ($0 < n < 40404$). Далее идут $n$ строк, каждая из которых содержит координаты $x$, $y$ ($-101 \leq x, y \leq 101$) левых нижних углов синих квадратов.

Каждый синий квадрат имеет хотя бы одну общую точку хотя бы с одним другим синим квадратом. Фигура, образованная синими квадратами, является связной.

Выходные данные

Вывести количество красных квадратов.

Тесты

Входные данные
Выходные данные
$3$
$1$ $2$
$2$ $1$
$3$ $1$
$3$
$3$
$1$ $1$
$2$ $2$
$1$ $3$
$6$
$10$
$1$ $1$
$2$ $2$
$1$ $3$
$2$ $4$
$1$ $5$
$2$ $6$
$1$ $7$
$2$ $8$
$1$ $9$
$2$ $10$
$90$

Код программы

Решение задачи

Для начала, нужно понять, что для каждой связной фигуры, составленной из одинаковых квадратов, существует как минимум один прямоугольник с таким-же периметром, что и фигура. Тогда каждую фигуру можно будет достраивать до прямоугольника, сохраняя периметр.

Чтобы доказать это, пусть сторона квадрата равна $1$. Тогда периметр фигуры, составленной из этих квадратов, всегда будет делится на $2$ (это легко понять, строя такие фигуры на листке бумаги: добавление каждого нового квадрата в фигуру может изменить периметр только на $-4, -2, 0, 2, 4$). А так как периметр прямоугольника равен $2 * (a + b)$, где $a, b$ – стороны прямоугольника, то для существования прямоугольника с таким-же периметром должно выполняться условие $\forall p \in \mathbb{N} , p > 2 \rightarrow \exists a,b \in \mathbb{N} : 2p = 2*( a + b )$. Очевидно, что условие действительно выполняется для всех $p>2$.

Запишем нашу фигуру в массив squares. После чего посчитаем ее периметр: каждый непустой квадратик фигуры добавляет $1$ к периметру за каждую пустую клеточку слева, справа, сверху или снизу от него. Далее будем искать все подходящие прямоугольники, записывая максимальную площадь в переменную max: перебирая значения первой стороны $j$, высчитываем через периметр вторую сторону $i = \displaystyle \frac{p}{2} — j$. Площадь будем считать, как разницу площади прямоугольника и изначальной фигуры (число $n$ равно площади фигуры, потому что площадь каждого квадрата равна $1$).
В конце, выводим разницу максимальной площади и площади изначальной фигуры (площадь изначальной фигуры равна $n$, ведь площадь каждого квадрата равна $1$).

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 500. Ремонт

Задача

Ваш любимый дядя – директор фирмы, которая делает евроремонты в офисах. В связи с финансово-экономическим кризисом, дядюшка решил оптимизировать свое предприятие.

Давно ходят слухи, что бригадир в дядюшкиной фирме покупает лишнее количество стройматериалов, а остатки использует для отделки своей новой дачи. Ваш дядя заинтересовался, сколько в действительности банок краски необходимо для покраски стены в офисе длиной $L$ метров, шириной $W$ и высотой $H$, если одной банки хватает на $16$ метров квадратных, а размерами дверей и окон можно пренебречь? Заказов много, поэтому дядя попросил написать программу, которая будет все это считать.

Входные данные

В первой строке содержится количество заказов. Описание каждого заказа состоит из трех натуральных чисел $L$, $W$, $H$ — длины, ширины и высоты офиса в метрах соответственно, каждое из которых не превышает $1000$.

Выходные данные

Для каждого заказа выводится в отдельную строку одно число – количество банок краски, необходимых для окраски офиса.

Тесты

 

Входные данные
Выходные данные
$1$
$1$ $1$ $1$
$1$
$3$
$8$ $7$ $10$
$15$ $8$ $4$
$3$ $5$ $4$
$19$
$12$
$4$
$2$
$27$ $88$ $19$
$999$ $999$ $999$
$274$
$249501$

Код программы

Решение задачи

Рассчитаем площадь стен комнаты как сумму площадей $4$ прямоугольников: $$hw + hl + hw + hl = 2hw + 2hl = 2h \cdot (w + l)$$ Теперь, зная площадь стен, рассчитаем количество банок краски. Для этого поделим площадь стен на $16$ и округлим вверх. Для округления вверх можно использовать тернарный условный оператор: если $s$ делится нацело на $16$, то ответ будет $\displaystyle \frac{s}{16}$, в противном случае – $\displaystyle \frac{s}{16} + 1$ (деление переменной int – целочисленное). Так как в задаче необходимо обрабатывать несколько таких примеров подряд, то все вычисления взяты в цикл от $0$ до $r$ (название переменной $r$ в самой задаче не указано, оно выбрано произвольно).

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 2817. Двоичные числа

Задача

Для заданного положительного целого числа $n$, распечатать позиции всех $1$ в двоичном его представлении. Позиция младшего бита имеет номер $0$.
Позиции $1$ в двоичном представлении числа $13$ — это $0$, $2$, $3$.
Напишите программу, которая для каждого набора данных:

  • читает натуральное число $n$,
  • вычисляет позиции $1$ в двоичном представлении $n$,
  • выводит результат.

Входные данные

В первой строке входного файла содержится одно натуральное число $d$, указывающее количество наборов входных данных, $1 \leq d \leq 10$. Входные данные заданы ниже.

Каждый набор данных состоит ровно из одной строки, содержащей ровно одно целое число $n$, $0 \leq n \leq 10^6$.

Выходные данные

Вывод должен состоять ровно из $d$ строк — по одной строке для каждого набора входных данных.

Строка $i$, $1 \leq i \leq d$, должна содержать возрастающую последовательность целых чисел, разделенных одним пробелом — позиции $1$ в двоичном представлении $i$-го числа, полученного во входных данных.

Тесты

 

Входные данные
Выходные данные
$3$
$17$
$7$
$5$
$0$ $4$
$0$ $1$ $2$
$0$ $2$
$4$
$1945$
$1337$
$1000000$
$999999$
$0$ $3$ $4$ $7$ $8$ $9$ $10$
$0$ $3$ $4$ $5$ $8$ $10$
$6$ $9$ $14$ $16$ $17$ $18$ $19$
$0$ $1$ $2$ $3$ $4$ $5$ $9$ $14$ $16$ $17$ $18$ $19$
$10$
$0$
$1$
$2$
$3$
$4$
$5$
$6$
$7$
$8$
$9$
$0$
$1$
$0$ $1$
$2$
$0$ $2$
$1$ $2$
$0$ $1$ $2$
$3$
$0$ $3$

Код программы

Решение задачи

Для решения этой задачи нужно понять, что остаток от деления $n$ на $2$ это последняя цифра в двоичном коде числа $n$, а деление целочисленной переменной $n$ на $2$ это отбрасывание последней цифры в двоичном коде. Цикл с счетчиком $i$ до момента, как $n$ не станет равняться $0$, очевиден, как и внешний цикл от $0$ до $d$, который реализовывает $d$ итераций ввода числа $n$. Стоит отметить, что тесты на e-olymp (все, кроме первого) чувствительны к пробелам в конце строки, из-за чего появляется необходимость каким-то образом его избежать.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 72. Дорога домой

Задача

Бедный Иа

Бедный Иа

Возвращаясь домой, после захватывающей игры в гостях у Винни Пуха, ослик Иа решил немного прогуляться. Поскольку во время прогулки он все время думал о своем приближавшемся дне рождения, то не заметил, как заблудился. Известно, что ослик во время прогулки всегда передвигается по определенному алгоритму: в начале прогулки он всегда начинает движение на северо-восток, делает при этом один шаг (перемещаясь при этом в точку [latex]\left \langle 1,1 \right \rangle[/latex]), потом меняет направление и двигается на юго-восток, далее на юго-запад, на северо-запад и так далее. При каждом изменении направления ослик всегда делает на [latex]n[/latex] шагов больше, чем было сделано до изменения направления.

Когда ослик все же решил возвратится домой, то обнаружил, что зашел глубоко в лес. Надвигалась ночь и Иа захотел поскорее попасть домой. Помогите узнать, удастся ли сегодня ослику попасть домой до заката солнца, если известно, что солнце зайдет через [latex]t[/latex] часов, а скорость передвижения ослика [latex]v[/latex] шагов в час (длина шага у ослика постоянна). Известно, что движение ослик начинал из точки с координатами [latex]\left \langle 0,0 \right \rangle[/latex], а его дом расположен в точке [latex]\left \langle x_{h},y_{h} \right \rangle[/latex], и направление движения он менял [latex]k[/latex] раз.

Входные данные

В первой строке задано четыре целых числа [latex]n[/latex], [latex]k[/latex], [latex]t[/latex], [latex]v[/latex] [latex](0\leq n,k,t,v\leq 100)[/latex] . Во второй строке размещено два целых числа [latex]x_{h}[/latex], [latex]y_{h}[/latex] – координаты домика ослика [latex](-10^5\leq x_{h}, y_{h}\leq 10^5)[/latex] .

Выходные данные

Вывести Good night Ia, если ослик успеет дойти домой до заката солнца или Poor Ia в противоположном случае.

Тесты

Входные данные
Выходные данные
[latex]1[/latex] [latex]5[/latex] [latex]3[/latex] [latex]2[/latex]

 

[latex]5[/latex] [latex]7[/latex]
Good night Ia
[latex]5[/latex] [latex]2[/latex] [latex]3[/latex] [latex]9[/latex]

 

[latex]15[/latex] [latex]15[/latex]
Good night Ia
[latex]4[/latex] [latex]4[/latex] [latex]3[/latex] [latex]20[/latex]

 

[latex]105[/latex] [latex]-105[/latex]
Poor Ia
[latex]3[/latex] [latex]4[/latex] [latex]2[/latex] [latex]3[/latex]

 

[latex]40[/latex] [latex]-20[/latex]
Good night Ia
[latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex]

 

[latex]-24[/latex] [latex]0[/latex]
Poor Ia
[latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex]

 

[latex]-23[/latex] [latex]0[/latex]
Good night Ia

Первый вариант кода программы

Второй вариант кода программы

Решение задачи

Вариант 1

Разделим решение задачи на две части: поиск местоположения Иа после прогулки и расчет пути домой.
Имеем следующую формулу вычисления вектора нахождения Иа после прогулки:
[latex]\sum\limits_{i=0}^k f(i, n)[/latex], где [latex]n[/latex] — изменение количества шагов Иа в каждой итерации, [latex]k[/latex] — cколько раз он менял движение, и функции:

[latex]f(x,y) = \begin{cases} \left \langle1 + xy, 1 + xy\right \rangle & \textit{if } x\vdots 4 = 0 \\ \left \langle1 + xy, (-1) \cdot (1 + xy)\right \rangle & \textit{if } x\vdots 4 = 1 \\ \left \langle(-1) \cdot (1 + xy), (-1) \cdot (1 + xy)\right \rangle & \textit{if } x\vdots 4 = 2 \\ \left \langle(-1) \cdot (1 + xy), 1 + xy\right \rangle & \textit{if } x\vdots 4 = 3 \end{cases}[/latex]

То есть, результат функции [latex]f(x,y)[/latex] это вектор, на который передвинулся Иа в итерации номер [latex]x[/latex] с изменением шага [latex]y[/latex], а результат [latex]\sum\limits_{i=0}^k f(i, n)[/latex] — это вектор [latex]\left \langle a,b \right \rangle[/latex] местоположения Иа в конце прогулки. Теперь нужно посчитать расстояние между местоположением Иа и его домом. Считаем из вектора [latex]\left \langle a,b \right \rangle[/latex] и вектора [latex]\left \langle x_{h},y_{h} \right \rangle[/latex]:

$$\sqrt{(x_{h} — a)^2 + (y_{h} — b)^2}$$

И считаем максимальное расстояние, которое может пройти Иа до заката солнца. Тут нужно учесть то, что скорость в условии измеряется в шагах в час, а шаг это расстояние между [latex]\left \langle 0,0 \right \rangle[/latex] и [latex]\left \langle 1,1 \right \rangle[/latex], то есть — [latex]\sqrt{2}[/latex].

$$ \sqrt{2} tv$$

Итого, выводим Good night Ia, если [latex]2t^2v^2 \geq (x_{h} — a)^2 + (y_{h} — b)^2[/latex] и Poor Ia в противном случае.

Вариант 2

Если рассмотреть каждое направление спирали, как элемент арифметической прогрессии, то можно следующим образом получить алгоритм решения данной задачи с вычислительной сложностью [latex]O(1)[/latex]. Используем сумму арифметической прогрессии $S = \displaystyle\frac{a_1 + a_m}{2}$, где $a_m = 1+(m-1)d$

Для направления на северо-восток:
$$a_1 = 1, d = 4n \Rightarrow S_{1}=\frac{1 + 1 +4n(m_1-1)}{2}\Rightarrow S_{1} = m_1(1+2n(m_1-1)),$$
где $m_1 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=1$ иначе, $m_1=\displaystyle\frac{k+1}{4}$

Для направления на юго-восток:
$$a_2 = 1+n, d = 4n \Rightarrow S_{2} = m_2(1+n+2n(m_2-1)),$$
где $m_2 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=2$ иначе, $m_2=\displaystyle\frac{k+1}{4}$

Для направления на юго-запад:
$$a_3 = 1+2n, d = 4n \Rightarrow S_{3} = m_3(1+2n+2n(m_3-1)),$$
где $m_3 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=3$ иначе, $m_3=\displaystyle\frac{k+1}{4}$

Для направления на северо-запад:
$$a_4 = 1+3n, d = 4n \Rightarrow S_{4} = m_4(1+3n+2n(m_4-1)),$$
где $m_4 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=4$ иначе, $m_4=\displaystyle\frac{k+1}{4}$

Тогда, для вычисления координат [latex]\left \langle x,y \right \rangle[/latex] воспользуемся следующей формулами:
$$x = S_{1} + S_{2} — S_{3} — S_{4}$$
$$y = S_{1} — S_{2} — S_{3} + S_{4}$$
Последующие вычисления эквивалентны первому варианту решения.

Ссылки

Условие задачи на e-olymp
Код решения первого варианта на ideone.com
Код решения второго варианта на ideone.com

e-olymp 2071. Три грибника

Задача

Три грибника

Три грибника

Три грибника Петя, Вася и Николай, возвращаясь из лесу домой, решили устроить привал, а заодно и перекусить. Как это у нас принято, через некоторое время каждый начал сначала хвастаться своими сегодняшними успехами, а со временем, а так все трое были друзьями, то вскоре начали делить найденными ими грибы между собой и своими товарищами.

Сначала Пётр дал Васе и Николаю по столько грибов, сколько у них уже было. Николай быстро понял, что так будет не по-братски, и дал Василию и Петру по столько грибов, по сколько у них стало. Василий не мог отстать от сотоварищей и также дал каждому из друзей по столько грибов, сколько у них этому моменту имелось. И тут друзья с удивлением обнаружили, что у всех стало грибов поровну.

Сколько грибов было у каждого перед привалом, если известно, что все вместе они собрали [latex]n[/latex] грибов?

Входные данные

В единственной строке находится единственное натуральное число [latex]n[/latex] ([latex]n ≤ 30000[/latex]).

Выходные данные

В единственной строке вывести через пробел количество грибов перед привалом у Петра, Василия и Николая, соответственно. Гарантируется, что все входные данные корректны.

Тесты

Входные данные
Выходные данные
[latex]24[/latex] [latex]13[/latex] [latex]4[/latex] [latex]7[/latex]
[latex]48[/latex] [latex]26[/latex] [latex]8[/latex] [latex]14[/latex]
[latex]72[/latex] [latex]39[/latex] [latex]12[/latex] [latex]21[/latex]
[latex]96[/latex] [latex]52[/latex] [latex]16[/latex] [latex]28[/latex]
[latex]120[/latex] [latex]65[/latex] [latex]20[/latex] [latex]35[/latex]
[latex]144[/latex] [latex]78[/latex] [latex]24[/latex] [latex]42[/latex]

Код программы

Решение задачи

Представим нашу задачу в форме таблицы, строки которой будут соответствовать грибникам, а столбцы — количеству грибов у соответствующего грибника между обменами:

П.
[latex]x_{1}[/latex] [latex]x_{2} = x_{1} — y_{1} — z_{1}[/latex] [latex]x_{3} = 2 \cdot x_{2}[/latex] [latex]x_{4} = 2 \cdot x_{3}[/latex]
В.
[latex]y_{1}[/latex] [latex]y_{2} = 2 \cdot y_{1}[/latex] [latex]y_{3} = 2 \cdot y_{2}[/latex] [latex]y_{4} = y_{3} — x_{3} — z_{3}[/latex]
Н.
[latex]z_{1}[/latex] [latex]z_{2} = 2 \cdot z_{1}[/latex] [latex]z_{3} = z_{2} — x_{2} — y_{2}[/latex] [latex]z_{4} = 2 \cdot x_{3}[/latex]

По условию задачи [latex]x_{4} = y_{4} = z_{4} = \frac n 3[/latex]. Тогда выражением нужных корней и подстановкой известных считаем [latex]x_{1}[/latex], [latex]y_{1}[/latex] и [latex]z_{1}[/latex] начиная с правого столбца и двигаясь налево:

[latex]x_{3} = \frac {x_{4}}{2} = \frac {n}{6}[/latex]
[latex]z_{3} = \frac {z_{4}}{2} = \frac {n}{6}[/latex]
[latex]y_{3} = y_{4} + x_{3} + z_{3}= \frac {n}{3} + \frac {n}{6} + \frac {n}{6} = \frac {2 \cdot n}{6}[/latex]
[latex]x_{2} = \frac {x_3}{2} = \frac {n} {12}[/latex]
[latex]y_{2} = \frac {y_3}{2} = \frac {n}{3}[/latex]
[latex]z_{2} = z_{3} + y_{2} + x_{2} = \frac {n}{6} + \frac {n}{12} + \frac {n}{3} = \frac {7 \cdot n}{12}[/latex]
[latex]y_{1} = \frac {y_{2}}{2} = \frac {n}{6}[/latex]
[latex]z_{1} = \frac {z_2}{2} = \frac {7 \cdot n}{24}[/latex]
[latex]x_{1} = x_{2} + y_{1} + z_{1} = \frac {n}{12} + \frac {n}{6} + \frac {6 \cdot n}{12} = \frac {13 \cdot n}{24}[/latex]

Получили ответы: [latex]x_{1} = \frac {13 \cdot n}{24}[/latex],  [latex]y_{1} = \frac {n}{6}[/latex] и [latex]z_{1} = \frac {7 \cdot n}{24}[/latex]. Это и будет количество грибов соответственно у Пети, Васи и Николая в самом начале. Отсюда получаем итоговую формулу решения, указанную в коде программы.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com