e-olymp 1868. Функция

Условие задачи
Вычислите функцию:

[latex]f(n)=\begin{cases} 1, \text{ если } n \leq 2 \\ f(\lfloor \frac{6\cdot n}{7} \rfloor)+f(\lfloor \frac{2\cdot n}{3} \rfloor), \text{ если } n \mod \; 2 = 1 \\ f(n-1)+f(n-3), \text{ если } n \mod \; 2 = 0 \end{cases}[/latex]

Входные данные
Одно натуральное число [latex] n \; [/latex] [latex](1 \leq n \leq 10^{12}) [/latex].

Выходные данные
Значение [latex] f(n) [/latex], взятое по модулю [latex] 2^{32} [/latex].
Continue reading

e-olymp 6122. Простой стек

Задача
Реализуйте структуру данных «стек». Напишите программу, содержащую описание стека и моделирующую работу стека, реализовав все указанные здесь методы. Программа считывает последовательность команд и в зависимости от команды выполняет ту или иную операцию. После выполнения каждой команды программа должна вывести одну строчку.Возможные команды для программы:

  • push n — Добавить в стек число n (значение n задается после команды). Вывести ok.
  • pop — Удалить из стека последний элемент. Программа должна вывести его значение.
  • back — Вывести значение последнего элемента, не удаляя его из стека.
  • size — Вывести количество элементов в стеке.
  • clear — Очистить стек и вывести ok.
  • exit — Вывести bye и завершить работу.

Входные данные
Каждая строка содержит одну команду.

Выходные данные
Для каждой команды вывести в отдельной строке соответствующий результат.

Тесты

входные данные выходные данные
push 2 ok
push 3 ok
push 5 ok
baсk 5
sizе 3
pop 5
sizе 2
push 7 ok
pop 7
clear ok
size 0
exit bye

Код программы

Решение задачи
Для каждой команды вводимой в программу реализуем функцию, которую она должна выполнять в стеке.

Ссылки

A303. Вычисления с хранением последовательности значений

Условие задачи

Даны действительные числа [latex]x_1,\;…,\;x_{200}[/latex], принадлежащие интервалу [latex](0, 1][/latex]. Полуинтервал разбивается на 100 равных частей. Вычислить [latex]p_1, …, p_{100}[/latex], где [latex]p_k = \frac{m_k}{2000}[/latex], а [latex]m_k[/latex] — количество заданных чисел, принадлежащих полуинтервалу [latex](0.01(k – 1), 0.01k] \ \ (k = 1, …, 100)[/latex].

Входные данные
Входной файл содержит 200 действительных чисел, принадлежащих интервалу [latex](0, 1][/latex].

Выходные данные
В выходной файл выведите 100 чисел [latex]p_k \ (k = 1, …, 100)[/latex].

Тесты

Входные данные Выходные данные
1
Последовательность [latex]\frac{1}{i}, \ i=1, …, 200[/latex] p[1]=0.067 p[2]=0.013 p[3]=0.006 p[4]=0.003 p[5]=0.002 p[6]=0.0015 p[7]=0.001 p[8]=0.001 p[9]=0.0005 p[10]=0.0005
p[11]=0.0005 p[12]=0 p[13]=0.0005 p[14]=0.0005 p[15]=0 p[16]=0 p[17]=0.0005 p[18]=0 p[19]=0 p[20]=0.0005
p[21]=0 p[22]=0 p[23]=0 p[24]=0 p[25]=0.0005 p[26]=0 p[27]=0 p[28]=0 p[29]=0 p[30]=0
p[31]=0 p[32]=0 p[33]=0.0005 p[34]=0 p[35]=0 p[36]=0 p[37]=0 p[38]=0 p[39]=0 p[40]=0
p[41]=0 p[42]=0 p[43]=0 p[44]=0 p[45]=0 p[46]=0 p[47]=0 p[48]=0 p[49]=0 p[50]=0.0005
p[51]=0 p[52]=0 p[53]=0 p[54]=0 p[55]=0 p[56]=0 p[57]=0 p[58]=0 p[59]=0 p[60]=0
p[61]=0 p[62]=0 p[63]=0 p[64]=0 p[65]=0 p[66]=0 p[67]=0 p[68]=0 p[69]=0 p[70]=0
p[71]=0 p[72]=0 p[73]=0 p[74]=0 p[75]=0 p[76]=0 p[77]=0 p[78]=0 p[79]=0 p[80]=0
p[81]=0 p[82]=0 p[83]=0 p[84]=0 p[85]=0 p[86]=0 p[87]=0 p[88]=0 p[89]=0 p[90]=0
p[91]=0 p[92]=0 p[93]=0 p[94]=0 p[95]=0 p[96]=0 p[97]=0 p[98]=0 p[99]=0 p[100]=0.0005

Код на языке C++:

Код на языке Java:

Решение задачи
Для сортировки чисел по полуинтервалам разделим каждое [latex]x_i[/latex] на [latex]0.01[/latex](т.е. умножим на 100) и округлим вправо. Заведём массив для подсчета количества чисел, принадлежащих полуинтервалам [latex](0.01(k – 1), 0.01k] \ \ (k = 1, …, 100)[/latex]. Выведем [latex]p_k \ (k = 1, …, 100)[/latex].

Условие задачи (стр. 127)
Код задачи на C++: Ideone
Код задачи на Java: Ideone

e-olymp 6128. Простой дек

Задача. Простой дек

Реализуйте структуру данных «дек». Напишите программу, содержащую описание дека и моделирующую работу дека, реализовав все указанные здесь методы. Программа считывает последовательность команд и в зависимости от команды выполняет ту или иную операцию. После выполнения каждой команды программа должна вывести одну строчку. Возможные команды для программы:

push_front

Добавить (положить) в начало дека новый элемент. Программа должна вывести ok.

push_back

Добавить (положить) в конец дека новый элемент. Программа должна вывести ok.

pop_front
Извлечь из дека первый элемент. Программа должна вывести его значение.

pop_back

Извлечь из дека последний элемент. Программа должна вывести его значение.

front

Узнать значение первого элемента (не удаляя его). Программа должна вывести его значение.

back 

Узнать значение последнего элемента (не удаляя его). Программа должна вывести его значение.

size

Вывести количество элементов в деке.

clear

Очистить дек (удалить из него все элементы) и вывести ok.

exit

Программа должна вывести bye и завершить работу.

Гарантируется, что количество элементов в деке в любой момент не превосходит 100. Все операции:

  • pop_front
  • pop_back
  • front
  • back

всегда корректны.

Объяснение: Количество элементов во всех структурах данных не превышает 10000, если это не указано особо.

Тесты

 №  Входные данные  Выходные данные
 1

 push_back 3

push_back 14

size

clear

push_front 1

back

push_back 2

front

pop_back

size

pop_front

size

exit

 ok

ok

2

ok

ok

1

ok

1

2

1

1

0

bye

 2  size

push_back 8

push_front 4

size

front

back

push_back 3

pop_front

front

pop_back

back

exit

0

ok

ok

2

4

8

ok

4

8

3

8

bye

Решение

Алгоритм решения

Реализация двусторонней очереди идет посредством векторов [latex]box1[/latex] и [latex]box2[/latex], поэтому нет необходимости делать проверку на переполнение. Команды [latex]push_front[/latex] и [latex]push_back[/latex] соответственно добавляют в концы векторов [latex]box1[/latex] и [latex]box2[/latex] элементы и увеличивают размер дека box_size (на единицу за каждый добавленный элемент). Рассмотрим команду [latex]front[/latex]. Проверяя присутствие элементов в [latex]box1[/latex] мы выводим последний элемент вектора, так как добавляли элемент с помощью [latex]push_front[/latex] в конец вектора [latex]box1[/latex]. Если же вектор [latex]box1[/latex] пуст, то выводим первый элемент вектора [latex]box2[/latex], который в случае пустого вектора [latex]box1[/latex] является первым элементом дека. Команда [latex]back[/latex] относительно [latex]front[/latex] с векторами работает инверсивно. Т.е. Проверяя присутствие элементов в [latex]box2[/latex] выводим последний элемент данного вектора. Если же вектор [latex]box2[/latex] пуст, то выводим первый элемент вектора [latex]box1[/latex] , который в случае пустого вектора [latex]box2[/latex] является последним элементом дека. С командами [latex]pop_front[/latex] и [latex]pop_back[/latex] работают идентично [latex]front[/latex] и [latex]back[/latex]. Отличие лишь в том, что команды [latex]pop[/latex] в дополнении к выводу элемента удаляют его, уменьшая размер дека [latex]box_size[/latex] (на единицу за каждый удаленный элемент). Команда [latex]size[/latex] выводит размер дека [latex]box_size[/latex]. Команда clear удаляет все элементы векторов [latex]box1[/latex], [latex]box2[/latex] и обнуляет размер дека. Команда [latex]exit[/latex] выводит «bye» и завершает работу программы. Команды принимаются из потока ввода посредством строки s.

Ссылка на код.

e-olymp.

 

6130. Дек неограниченного размера

Условие задачи:
Реализуйте структуру данных «дек». Напишите программу, содержащую описание дека и моделирующую работу дека, реализовав все указанные здесь методы. Программа считывает последовательность команд и в зависимости от команды выполняет ту или иную операцию. После выполнения каждой команды программа должна вывести одну строчку. Возможные команды для программы:

push_front

Добавить (положить) в начало дека новый элемент. Программа должна вывести ok.

push_back

Добавить (положить) в конец дека новый элемент. Программа должна вывести ok.

pop_front

Извлечь из дека первый элемент. Программа должна вывести его значение.

pop_back

Извлечь из дека последний элемент. Программа должна вывести его значение.

front

Узнать значение первого элемента (не удаляя его). Программа должна вывести его значение.

back

Узнать значение последнего элемента (не удаляя его). Программа должна вывести его значение.

size

Вывести количество элементов в деке.

clear

Очистить дек (удалить из него все элементы) и вывести ok.

exit

Программа должна вывести bye и завершить работу.

Размер дека должен быть ограничен только размером доступной оперативной памяти. Перед исполнением операций pop_front, pop_back, front, back программа должна проверять, содержится ли в деке хотя бы один элемент. Если во входных данных встречается операция pop_front, pop_back, front, back, и при этом дек пуст, то программа должна вместо числового значения вывести строку error.

Тесты

Входные данные Выходные данные
push_front 1 ok
push_back 9 ok
push_front 2 ok
push_back 3 ok
size 4
pop_front 2
pop_back 3
size 2
front 1
back 9
clear ok
size 0
back error
exit bye

Описание решения задачи:
Для решения данной задачи использовался двунаправленный линейный список. Каждый узел ДЛС содержит два поля указателей — на следующий и на предыдущий узел. Для этого в задаче была создана структура [latex]Node[/latex]. Указателем на адрес начала списка и конца, соответственно, выступают узлы [latex]head[/latex] и [latex]tail[/latex], изначально инициализированные нулем.

Я выбрала данный метод реализации неограниченного дека, так как основным назначением связного списка и является предоставление механизма для хранения и доступа к произвольному количеству данных, что являлось основным барьером решения данной задачи. В отличии от массива, подсчет размера которого так же будет требовать дополнительных математических расчетов, список не требует дополнительных временных затрат на копирование/переписывание элементов при увеличении размера массива, рассчитанного на менее громоздкие вхождения. Да, прямого доступа к значениям произвольного элемента по индексу у нас нет, но на то и была поставлена задача в реализации именно этого представителя библиотеки контейнеров, ведь в деке допустимо удаление/добавление элементов лишь на концах. Единственным действительно заметным минусом в сравнении с использованием массива, по моему мнению, является увеличение расхода памяти в три раза, из-за хранения помимо основного значения элемента указатели на предыдущий и последующий элементы.

Условие задачи
Код задачи на с++
Засчитанное решение

A302. Количество различных цифр числа в его десятичной записи

Задача

Дано натуральное число [latex]N[/latex]. Сколько различных цифр встречается в его десятичной записи?

Входные данные

Натуральное число [latex]N[/latex].

Выходные данные

Количество различных цифр [latex]sum[/latex].

Тесты

Входные данные Выходные данные
[latex]N[/latex] [latex]sum[/latex]
12345678900987654321 sum:10
302 sum:3

Код программы с использованием deque

 

Решение

Создадим дэк [latex]folder[/latex] в котором будем хранить различные цифры десятичной записи. Добавляем первую цифру числа [latex]N[/latex] в дэк и делим [latex]N[/latex] на [latex]10[/latex]. Следующие цифры мы будем добавлять после проверки на отсутствие таких же в [latex]folder[/latex], если цифры совпадают заканчиваем цикл. В конце выводим размер [latex]folder[/latex] который и является [latex]sum[/latex].

Код программы с использованием массива

Решение

Создадим массив [latex]folder[/latex] в котором будем хранить кол-во встреч для различных цифр десятичной записи в соответствующих позициях массива. Увеличиваем на один значения соответствующей позиции массива и делим [latex]N[/latex] на [latex]10[/latex]. Для определения [latex]sum[/latex] делаем цикл и проверяем ненулевые значения массива [latex]folder[/latex].

Ссылки

Ideone через deque;
Ideone через массив;
Условие задачи (стр. 126).