e-olymp 1521. Оптимальное умножение матриц

Задача

Имея два двумерных массива [latex]A[/latex] и [latex]B[/latex], мы можем вычислить [latex]C = AB[/latex] используя стандартные правила умножения матриц. Число колонок в массиве [latex]A[/latex] должно совпадать с числом строк массива [latex]B[/latex]. Обозначим через [latex]rows(A)[/latex] и [latex]columns(A)[/latex] соответственно количество строк и колонок в массиве [latex]A[/latex]. Количество умножений, необходимых для вычисления матрицы [latex]C[/latex] (ее количество строк совпадает с [latex]A[/latex], а количество столбцов с [latex]B[/latex]) равно [latex]rows(A) columns(B) columns(A)[/latex]. По заданной последовательности перемножаемых матриц следует найти оптимальный порядок их умножения. Оптимальным называется такой порядок умножения матриц, при котором количество элементарных умножений минимально.

Входные данные:

Каждый тест состоит из количества [latex]n (n ≤ 10)[/latex] перемножаемых матриц, за которым следуют [latex]n[/latex] пар целых чисел, описывающих размеры матриц (количество строк и столбцов). Размеры матриц задаются в порядке их перемножения. Последний тест содержит [latex]n = 0[/latex] и не обрабатывается.

Выходные данные:

Пусть матрицы пронумерованы [latex]A_{1}[/latex], [latex]A_{2}[/latex],…, [latex]A_{n}[/latex]. Для каждого теста в отдельной строке следует вывести его номер и скобочное выражение, содержащее оптимальный порядок умножения матриц. Тесты нумеруются начиная с [latex]1[/latex]. Вывод должен строго соответствовать формату, приведенному в примере. Если существует несколько оптимальных порядков перемножения матриц, выведите любой из них.

Тесты

 №  Входные данные  Выходные данные
 1 3
1 5
5 20
20 1
3
5 10
10 20
20 35
6
30 35
35 15
15 5
5 10
10 20
20 25
0
Case 1: (A1 x (A2 x A3))
Case 2: ((A1 x A2) x A3)
Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))
 2  10
653 273
273 692
692 851
851 691
691 532
532 770
770 690
690 582
582 519
519 633
0
Case 1: (A1 x ((((((((A2 x A3) x A4) x A5) x A6) x A7) x A8) x A9) x A10))
 3  2
11 12
12 33
7
1 5
5 28
28 19
19 2
2 10
10 1
1 12
4
10 29
29 133
133 8
8 15
0
Case 1: (A1 x A2)
Case 2: (((((A1 x A2) x A3) x A4) x (A5 x A6)) x A7)
Case 3: ((A1 x (A2 x A3)) x A4)

Код программы

Засчитанное решение на e-olymp.com

Решение

Пусть [latex]A[/latex]- любая не последняя матрица заданной последовательности, [latex]B[/latex] — матрица, что следует за [latex]A[/latex] в данной последовательности перемножаемых матриц. Заведём двумерный массив [latex]dp[/latex] размером [latex] {(n+1)}\times {(n+1)}[/latex]. По главной диагонали массива запишем размеры матриц, причём [latex]rows(B)[/latex] не будем записывать, так как [latex]rows(B)=columns(A)[/latex]. В dp[k][j] [latex]\left( j<k \right) [/latex] будем хранить минимальное количество операций необходимое для получения матрицы [latex]C_{kj}[/latex] такой, что [latex]columns(C_{kj})[/latex] равно элементу dp[k][k], а [latex]rows(C_{kj})[/latex] соответственно dp[j][j]. Для получения матрицы [latex]C_{kj}[/latex] нужно умножить матрицу [latex]C_{k(j+t)}[/latex] на [latex]C_{(j+t)j}[/latex] [latex](\left( k-j \right) >t>0)[/latex], для этого нам понадобиться [latex]rows(C_{k(j+t)}) columns(C_{(j+t)j}) columns(C_{k(j+t)}) [/latex], что равно dp[k][k]*dp[j][j]*dp[j+t][j+t], операций непосредственно на перемножение этих матриц, а также dp[k][j+t] и dp[j+t][j] операций для получения матриц [latex]C_{k(j+t)}[/latex] и [latex]C_{(j+t)j}[/latex] соответственно.
Тогда dp[k][j]=dp[k][j+t]+dp[j+t][j]+dp[k][k]*dp[j][j]*dp[j+t][j+t]. При помощи цикла подберём [latex] t [/latex], при котором значение dp[k][j] выходит минимальным. Для получения матриц, которые даны изначально, не требуется ни одной операции, поэтому диагональ массива прилегающую к главной диагонали оставим заполненной нулями. Далее, при помощи вложенных циклов на каждом шаге внешнего цикла будем заполнять диагональ массива, что расположена ниже предыдущей. Параллельно будем запоминать номер последнего умножения, который будет равен [latex]j+t[/latex], в элемент массива, который расположен симметрично  dp[k][j] относительно главной диагонали (то есть в dp[j][k]). Таким образом от умножения двух исходных матриц поэтапно перейдём к оптимальному произведению [latex]n[/latex] матриц. Затем, рекурсивно восстановим оптимальный порядок умножения матриц. Для вывода ответа в соответствующем формате также воспользуемся рекурсией.

Ссылки

Related Images:

e-olymp 595. Новый Лабиринт Амбера

Задача с сайта e-olymp.com

Условие задачи

Как-то Корвину – принцу Амбера, по каким-то важным делам срочно понадобилось попасть в самую далекую тень, которую он только знал. Как всем известно, самый быстрый способ путешествия для принцев Амбера – это Лабиринт Амбера. Но у Корвина были настолько важные дела, что он не хотел тратить время на спуск в подземелье (именно там находится Амберский Лабиринт). Поэтому он решил воспользоваться Новым Лабиринтом, который нарисовал Дворкин. Но этот Лабиринт не так прост, как кажется…

Новый Лабиринт имеет вид последовательных ячеек, идущих друг за другом, пронумерованных от [latex]1[/latex] до [latex]N[/latex]. Из ячейки под номером [latex]i[/latex] можно попасть в ячейки под номерами [latex]i+2[/latex] (если [latex]i+2 ≤ N[/latex]) и [latex]i+3[/latex] (если [latex]i+3 ≤ N[/latex]). На каждой ячейке лежит какое-то количество золотых монет [latex]{ k }_{ i }[/latex]. Для того чтобы пройти лабиринт нужно, начиная ходить из-за границ лабиринта (с нулевой ячейки) продвигаться по выше описанным правилам, при этом подбирая все монетки на ячейках, на которых вы делаете промежуточные остановки. Конечная цель путешествия – попасть на ячейку с номером [latex]N[/latex]. Дальнейшее путешествие (в любое место Вселенной) возможно лишь тогда, когда достигнув ячейки с номером [latex]N[/latex], вы соберете максимально количество монеток. Напишите программу, которая поможет Корвину узнать, какое максимальное количество монеток можно собрать, проходя Новый Лабиринт Амбера.

Входные данные

В первой строке входного файла содержится натуральное число [latex]N (2 ≤ N ≤ 100000)[/latex], а во второй [latex]N[/latex] целых чисел, разделенных одним пробелом, [latex]{ k }_{ i }[/latex] – количество монеток, лежащих в ячейке с номером [latex]i[/latex] [latex](0 ≤ i ≤ 1000)[/latex].

Выходные данные

В выходной файл вывести одно целое число – максимальное количество монеток, которое можно собрать, проходя лабиринт.

Тесты

Входные данные Выходные данные
1 5
1000 2 3 1 3
6
2 2
1 2
2
3 4
1 3 100 0
3

Решение с использованием цикла

Код программы

Засчитанное решение на e-olymp.com.

Описание

Для хранения количества монет в каждой ячейке лабиринта используем массив [latex]dp[/latex] длиной [latex]n+1[/latex] элементов. При этом каждой ячейке лабиринта соответствует ячейка массива с тем же индексом, а нулевой элемент массива понимаем как точку перед входом в лабиринт. В цикле считываем количество монет в каждой ячейке, после чего обнуляем значение нулевого элемента массива, поскольку ячейка, соответствующая ему, находится вне лабиринта, и первого, поскольку в ячейку, соответствующую ему, невозможно попасть никаким образом. Далее в цикле для каждой ячейки лабиринта находим, какое максимальное количество монет может быть у Корвина после её посещения. В ячейку с номером [latex]i[/latex] он может попасть или из ячейки с номером [latex]i-2[/latex], или из ячейки с номером [latex]i-3[/latex]. При этом он несёт с собой все собранные ранее монеты, и добавляет к ним те, что находятся в данной ячейке. Таким образом, формула для нахождения максимального количества монет после посещения [latex]i[/latex]-й ячейки имеет вид [latex]dp[i] = dp[i] + max(dp[i-2], dp[i-3])[/latex], и ответ к задаче хранится в [latex]n[/latex]-й ячейке массива. Дополнительно требуется проводить проверку на выход за границы массива.

Код на ideone.com.

Решение с использованием рекурсивной функции

Код программы

Засчитанное решение на e-olymp.com.

Описание

В данном случае используется функция [latex]f[/latex], принимающая номер ячейки массива и возвращающая максимальное количество монет после посещения ячейки с этим номером. Сначала объявляются два глобальных массива:
[latex]dp[/latex], в [latex]i[/latex]-й ячейке которого изначально хранится количество монет в [latex]i[/latex]-й ячейке лабиринта, и [latex]used[/latex], элементы которого принимают значения [latex]0[/latex] или [latex]1[/latex] (значение [latex]0[/latex] в [latex]i[/latex]-й ячейке означает, что максимальное количество монет после посещения
ячейки лабиринта с тем же номером рассчитано ещё не было). Далее всё происходит как в решении с использованием цикла, но одновременно с чтением входных данных обнуляются элементы [latex]used[/latex], а вместо второго цикла происходит вызов функции [latex]f[/latex]. Сама же функция [latex]f[/latex], если значение параметра меньше двух, возвращает [latex]0[/latex], а иначе, если этого не было сделано ранее, вычисляет максимальное количество монет после посещения ячейки с номером [latex]i[/latex] по формуле [latex]dp[i] = dp[i] + max(dp[i-2], dp[i-3])[/latex] и возвращает его.

Код на ideone.com.
Кроме того, об идее решения данной задачи можно почитать здесь.

Related Images: