Сумма делителей — 2

Задача

Профессор из тридевятого царства решил, что посчитать сумму делителей числа $n$ до $10^{10}$ сможет любой троечник, поэтому усложнил для Кости задачу, дав числа с большим количеством цифр. Но наш герой не хотел сдаваться, уж больно он хотел стать отличником.
Костя очень просит Вас помочь ему в этом деле, ведь он помнит, как успешно Вы справились с предыдущей задачей.

Входные данные

Одно целое число $n \left(1 \leqslant n < 10^{15}\right).$

Выходные данные

Выведите сумму делителей числа $n.$

Тесты

Входные данные Выходные данные
$100000000000031$ $100000000000032$
$10000019$ $10000020$
$400001520001444$ $700002730002667$
$9$ $13$
$304250263527210$ $1281001468723200$
$94083986096100$ $457766517350961$
$1234567898765$ $1517681442816$
$100000000000000$ $249992370597277$
$562949953421312$ $1125899906842623$
$81795$ $161280$
$9999999999999$ $14903272088640$
$997$ $998$
$1325$ $1674$
$2468013$ $3290688$
$951641320$ $2447078400$
$71675429738641$ $71695352830464$
$1100000000033$ $1200000000048$
$6300088$ $11859480$
$98$ $171$
$9102837465$ $15799834440$

Код программы

Решение задачи

Пусть $n$ имеет каноническое разложение $n = p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots p_k^{\alpha_k},$ где $p_1 < p_2 < \ldots <p_k$ — простые делители числа $n$, $\alpha_1, \alpha_2,\ldots, \alpha_k \in \mathbb {N}$. Тогда сумма натуральных делителей числа $n$ равна $\sigma\left(n\right) = \left(1 + p_1 + p_1^2 +\ldots + p_1^{\alpha_1}\right)\cdot\left(1 + p_2 + p_2^2 +\ldots + p_2^{\alpha_2}\right)\cdot\ldots\times$$\times\left(1 + p_k + p_k^2 +\ldots + p_k^{\alpha_k}\right).$
Доказательство.
Рассмотрим произведение:
$\left(1 + p_1 + p_1^2 +\ldots + p_1^{\alpha_1}\right)\cdot\left(1 + p_2 + p_2^2 +\ldots + p_2^{\alpha_2}\right)\cdot\ldots\cdot\left(1 + p_k + p_k^2 +\ldots + p_k^{\alpha_k}\right)$
Если раскрыть скобки, то получим сумму членов ряда:
$p_1^{\beta_1}\cdot p_2^{\beta_2}\cdot\ldots\cdot p_k^{\beta_k},$ где $0\leqslant\beta_m\leqslant\alpha_m \left(m = 1, 2, \ldots, k\right)$
Но такие члены являются делителями $n$, причем каждый делитель входит в сумму только один раз. Поэтому рассмотренное нами произведение равно сумме всех делителей $n,$ т.е. равно $\sigma\left(n\right).$ Итак, $\sigma\left(n\right)$ можно вычислить по нашей формуле. С другой стороны, каждая сумма $1 + p_m + p_m^2+\ldots+p_m^{\alpha_m}$ является суммой геометрической прогрессии с первым членом $1$ и знаменателем $p_m$. Поэтому иначе данную формулу можно переписать так:
$$\sigma\left(n\right) = \frac{p_1^{\alpha_1+1}-1}{p_1-1}\cdot\frac{p_2^{\alpha_2+1}-1}{p_2-1}\cdot\ldots\cdot\frac{p_k^{\alpha_k+1}-1}{p_k-1}.$$
Для того, чтобы не вычислять $p_k^{\alpha_k+1}$, перепишем данную формулу в следующем виде:
$$\sigma\left(n\right) = \left(\frac{p_1^{\alpha_1}-1}{p_1-1}+p_1^{\alpha_1}\right)\cdot\left(\frac{p_2^{\alpha_2}-1}{p_2-1}+p_2^{\alpha_2}\right)\cdot\ldots\cdot\left(\frac{p_k^{\alpha_k}-1}{p_k-1}+p_k^{\alpha_k}\right).$$

Ссылки

Код решения

Сумма делителей

Задача

Жил-был в тридевятом государстве мальчик по имени Костя. Он был старательным учеником и получал исключительно высокие баллы по всем предметам. И вот наш герой очень захотел стать отличником, но ему не хватало нескольких баллов по алгебре. Для того чтобы их набрать, профессор дал Косте следующую задачу:
Найти сумму делителей данного числа $n.$
Костя обратился к Вам как к опытному программисту, который знает алгебру, с просьбой о помощи решить данную задачу.

Входные данные

Одно целое число $n \left(1 \leqslant n < 10^{10}\right).$

Выходные данные

Выведите сумму делителей числа $n.$

Тесты

Входные данные Выходные данные
$12$ $28$
$239$ $240$
$1234$ $1854$
$6$ $12$
$1000000007$ $1000000008$
$44100$ $160797$
$223092870$ $836075520$
$2147483648$ $4294967295$
$678906$ $1471002$
$1111111$ $1116000$
$9876543210$ $27278469036$
$99460729$ $99470703$
$5988$ $14000$
$1$ $1$
$1348781387$ $1617960960$
$135792$ $406224$
$5402250$ $17041284$
$375844500$ $1259767236$
$1000000000$ $2497558338$
$2357947691$ $2593742460$

Код программы

Решение задачи

Пусть $n$ имеет каноническое разложение $n = p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots p_k^{\alpha_k},$ где $p_1 < p_2 < \ldots <p_k$ — простые делители числа $n$, $\alpha_1, \alpha_2,\ldots, \alpha_k \in \mathbb {N}$. Тогда сумма натуральных делителей числа $n$ равна $\sigma\left(n\right) = \left(1 + p_1 + p_1^2 +\ldots + p_1^{\alpha_1}\right)\cdot\left(1 + p_2 + p_2^2 +\ldots + p_2^{\alpha_2}\right)\cdot\ldots\times$$\times\left(1 + p_k + p_k^2 +\ldots + p_k^{\alpha_k}\right).$
Доказательство.
Рассмотрим произведение:
$\left(1 + p_1 + p_1^2 +\ldots + p_1^{\alpha_1}\right)\cdot\left(1 + p_2 + p_2^2 +\ldots + p_2^{\alpha_2}\right)\cdot\ldots\cdot\left(1 + p_k + p_k^2 +\ldots + p_k^{\alpha_k}\right)$
Если раскрыть скобки, то получим сумму членов ряда:
$p_1^{\beta_1}\cdot p_2^{\beta_2}\cdot\ldots\cdot p_k^{\beta_k},$ где $0\leqslant\beta_m\leqslant\alpha_m \left(m = 1, 2, \ldots, k\right)$
Но такие члены являются делителями $n$, причем каждый делитель входит в сумму только один раз. Поэтому рассмотренное нами произведение равно сумме всех делителей $n,$ т.е. равно $\sigma\left(n\right).$ Итак, $\sigma\left(n\right)$ можно вычислить по нашей формуле. С другой стороны, каждая сумма $1 + p_m + p_m^2+\ldots+p_m^{\alpha_m}$ является суммой геометрической прогрессии с первым членом $1$ и знаменателем $p_m$. Поэтому иначе данную формулу можно переписать так:
$$\sigma\left(n\right) = \frac{p_1^{\alpha_1+1}-1}{p_1-1}\cdot\frac{p_2^{\alpha_2+1}-1}{p_2-1}\cdot\ldots\cdot\frac{p_k^{\alpha_k+1}-1}{p_k-1}.$$

Ссылки

Код решения

e-olymp 1477. Наибольшее среднее

Задача

На доске выписаны $n$ целых чисел. Все они пронумерованы от $1$ до $n.$ Разрешается выбрать два произвольных числа, вытереть оба с доски и написать новое число, равное их среднему арифметическому. Новое число получает номер $n + 1.$ После этого снова выбираются два числа и вместо них записывается их среднее арифметическое, которому дается номер $n + 2$ и т.д. Так продолжается до тех пор, пока на доске не останется только одно число. Чем больше будет это число, тем более успешной считается последовательность действий.

Определите порядок действий, который приводит к максимально возможному числу в конце.

Входные данные

В первой строке записано целое число $n$ $(1 \leqslant n \leqslant 10^5).$ Во второй строке задаются $n$ целых чисел, которые были первоначально записаны на доске. Все числа лежат в диапазоне от $-10000$ до $10000.$

Выходные данные

Выведите $n — 1$ строку, в каждой из которых должны быть записаны по два целых числа, определяющие номера тех чисел, которые выбираются на соответствующем шаге.

Тесты

Входные данные Выходные данные
$3$
$7\;2\;4$
$2\;3$
$1\;4$
$4$
$6\;2\;7\;1$
$2\;4$
$1\;5$
$3\;6$
$4$
$12\;4\;7\;2$
$2\;4$
$3\;5$
$1\;6$
$5$
$234\;2\;5\;54\;5$
$2\;3$
$5\;6$
$4\;7$
$1\;8$

Код программы

Решение задачи

Для решения задачи создаем multimap, затем циклом вводим туда пары, где первое значение — это число с потока, а второе — его номер. После этого мы сохраняем первые два значения из multimap, выводим их номера и находим среднее число. Добавляем в multimap пару, где первое значение — это найденное средние двух чисел, а второе — номер. В конце концов мы получим, что в multimap будет всего одна пара и цикл остановит свою работу. Задача решена.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 2892. Сумма значений

Задача

Найдите сумму значений функции
$$f \left(x \right ) = x + \frac{1}{x}$$
в нескольких целых точках.

Входные данные

В первой строке задано количество точек $n$ $\left (1 \leqslant n \leqslant 50 \right ).$ В следующей строке заданы $n$ целых чисел $x_1, x_2, …, x_n$ — точки, значения функции в которых нужно просуммировать $\left (0 \leqslant \left |x_i \right | \leqslant 10^9 \right ).$

Выходные данные

Выведите одно число — сумму значений функции $f \left(x \right )$ в заданных точках. Ответ считается правильным, если абсолютная или относительная погрешность не превышает $10^{-9}.$

Тесты

Входные данные Выходные данные
$3$ $7.833333333333333$
$1 \ 2 \ 3$
$2$ $0$
$1 \ -1$
$5$ $4.265140415140415$
$10 \ -13 \ 21 \ -18 \ 4$
$1$ $10.1$
$10$

Код программы

Решение задачи

Мы просто суммируем значения функции в каждой точке. Тут использовали тип long double для точек и значений функции для меньшей погрешности.

Ссылки

Условие задачи на e-olymp
Код решения

e-olymp 1225. Черный Ящик

Задача

Черный Ящик представляет собой примитивную базу даных. Он может хранить массив целых чисел, а также имеет специальную переменную $i$. В начальный момент Черный Ящик пустой, переменная $i$ равна $0$. Черный Ящик обрабатывает последовательность команд (транзакций). Существует два типа транзакций:
ADD(x): добавить элемент x в Черный Ящик;
GET: увеличить $i$ на $1$ и вывести $i$-ый минимальный элемент среди всех чисел, находящихся в Черном Ящике.
Помните, что $i$-ый минимальный элемент находится на $i$-ом месте после того как все элементы Черного Ящика будут отсортированы в неубывающем порядке.
Рассмотрим работу черного ящика на примере:

Транзакция $i$ Содержимое Черного Ящика после транзакции Ответ
1 ADD(3) 0 3
2 GET 1 3 3
3 ADD(1) 1 1, 3
4 GET 2 1, 3 3
5 ADD(-4) 2 -4, 1, 3
6 ADD(2) 2 -4, 1, 2, 3
7 ADD(8) 2 -4, 1, 2, 3, 8
8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8
9 GET 3 -1000, -4, 1, 2, 3, 8 1
10 GET 4 -1000, -4, 1, 2, 3, 8 2
11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

Необходимо разработать эффективный алгоритм выполнения заданной последовательности транзакций. Максимальное количество транзакций ADD и GET равно $30000$ (каждого типа).
Опишем последовательность транзакций двумя целочисленными массивами:

  1. $A_1, \ A_2, \ldots , \ A_m:$ последовательность элементов, которая будет добавляться в Черный Ящик. Элементами являются целые числа, по модулю не большие $2 000 000 000$, $m \leq 30000$. Для выше описанного примера $A = \left (3, 1, -4, 2, 8, -1000, 2 \right).$
  2. $u_1, \ u_2, \ldots , \ u_n:$ последовательность указывает на количество элементов в Черном Ящике в момент выполнения первой, второй, … $n$-ой транзакции GET. Для выше описанного примера $u = \left (1, 2, 6, 6 \right ).$

Работа Черного Ящика предполагает, что числа в последовательности $u_1, \ u_2, \ldots , \ u_n$ отсортированы в неубывающем порядке, $n \leq m$, а для каждого $p \left (1 \leq p \leq n \right )$ имеет место неравенство $p \leq u(p) \leq m$. Это следует из того, что для $p$-го элемента последовательности $u$ мы выполняем GET транзакцию, которая выводит $p$-ый минимальный элемент из набора чисел $A_1, \ A_2, \ldots , \ A_{u_p}$.

Входные данные

Состоит из следующего набора чисел: $m, \ n, \ A_1, \ A_2, \ldots , \ A_m, \ u_1, \ u_2, \ldots , \ u_n.$ Все числа разделены пробелами и (или) символом перевода на новую строку.

Выходные данные

Вывести ответы Черного Ящика на последовательность выполненных транзакций. Каждое число должно выводиться в отдельной строке.

Тесты

Входные данные Выходные данные
7 4
3 1 -4 2 8 -1000 2
1 2 6 6
3
3
1
2
8 3
5 8 3 7 3 5 7 0
2 3 3
5
5
8
10 4
6 3 7 3 8 4 7 4 6 15
4 6 8 9
3
3
4
4
5 5
1 2 3 4 5
1 2 3 4 5
1
2
3
4
5
11 5
4 6 8 9 5 3 6 8 10 12 13
6 7 8 9 10
3
4
5
6
6

Код программы

Решение задачи

Пусть nums — множество всех элементов последовательности $A_n$. blackBox — мультимножество, представляющее собой описанный в задаче Черный Ящик на $i$-ом запросе. Изначально blackBox содержит «бесконечность» для избежания выхода за пределы. it — итератор, указывающий на $i$-ый минимальный элемент blackBox. Изначально данный итератор указывает на первый элемент множества. На $i$-ом запросе в blackBox копируются элементы массива nums от $u_{i-1}-1$-го до $u_{i}-1$-го (примем, что $u_0$ = 0). Тогда при добавлении в blackBox элемента, меньшего, чем тот, на который в данный момент указывает итератор it — $min_i$, $i$-ым минимальным элементом, становится элемент, предшествующий $min_i$. После выполнения ответа на $i$-ый запрос итератор должен указывать на $i+1$-ый минимальный элемент, то есть на элемент, следующий за $min_i$.

Ссылки

Условие задачи на e-olymp
Решение на e-olymp
Код решения на Ideone

e-olymp 161. Роботы

Задача

На некотором заводе решили модернизировать производство и закупили для этого роботов. Так как для обработки детали требовалось выполнение двух операций, роботы также были двух типов: первую операцию выполняли роботы типа $A$, а вторую – роботы типа $B$. Чтобы сэкономить на покупке роботов, было решено купить не новых роботов последней модели, а уже бывших в употреблении. В результате, время, которое разные роботы тратили на выполнение одной и той же операции, существенно различалось, что привело к трудностям в планировании работ.

Составьте программу, которая по заданному набору роботов обоих типов определяет, за какое минимальное время они смогут обработать определенное количество деталей.

Входные данные

В первой строке натуральное число $N$, $1 ≤ N ≤ 100000$ – количество деталей, которое необходимо обработать.

Во второй строке натуральное число $N_a$, $1 ≤ N_a ≤ 1000$ – количество роботов, выполняющих первую операцию.

В третьей строке через пробел $N_a$ натуральных чисел $A_{i}$, $1 ≤ A_{i} ≤ 100$ – время, которое тратит $i$-ый робот типа $A$ на выполнение операции.

В четвертой строке натуральное число $N_b$, $1 ≤ N_b ≤ 1000$ – количество роботов, выполняющих вторую операцию.

В пятой строке через пробел $N_b$ натуральных чисел $B_{i}$, $1 ≤ B_{i} ≤ 100$ – время, которое тратит $i$-ый робот типа $B$ на выполнение операции.

Выходные данные

В первой строке одно целое число – минимальное время, за которое все $N$ деталей будут обработаны сначала роботом типа $A$, а потом роботом типа $B$. Временем передачи детали от робота типа $A$ роботу типа $B$ пренебречь.

Тесты

Входные данные Выходные данные
[latex]6[/latex] [latex]9[/latex]
[latex]3[/latex]
[latex]1\, 3\, 2[/latex]
[latex]2[/latex]
[latex]2\, 3[/latex]
[latex]2[/latex] [latex]5[/latex]
[latex]2[/latex]
[latex]3\, 2[/latex]
[latex]2[/latex]
[latex]2\, 3[/latex]
[latex]5[/latex] [latex]41[/latex]
[latex]4[/latex]
[latex]84\, 50\, 50\ 8[/latex]
[latex]2[/latex]
[latex]1\, 21[/latex]
[latex]100[/latex] [latex]100[/latex]
[latex]2[/latex]
[latex]1\, 50[/latex]
[latex]4[/latex]
[latex]1\, 2\, 3\, 4[/latex]

Код программы

Решение задачи

Решение состоит из двух этапов.
Найдем минимальное время, которое понадобится роботам первого типа, чтобы завершить обработку всех деталей. Для каждой детали, мы берем робота с минимальным временем завершения обработки этой детали и обновляем его время на время обработки им одной детали.
Найдем теперь общее минимальное время работы роботов, требуемое для завершения обработки всех деталей. Пусть нам уже известно, за какое время обрабатывают роботы первого типа каждую из данных деталей. Очевидно, что если возможно выполнить работу за $t$, то возможно выполнить работу и за $t+1$, а также, если невозможно выполнить работу за $t$, то невозможно выполнить работу за $t-1$. Следовательно, для решения данной задачи можно применить бинарный поиск по ответу. Применим бинарный поиск по ответу, рассматривая детали по мере их поступления с конца: роботы могут выполнить работу за $T$, если для каждой детали существует такой робот второго типа, который выполнит работу за $T_{2}$, такое, что $ T_{1}+T_{2}$ $\leqslant T$, где $T_{1}$ – время, за которое эту деталь выполнит робот первого типа.
Теперь оценим сложность работы алгоритма. Бинарный поиск работает за $O(\log n)$. Для каждого этапа бинарного поиска мы обрабатываем $n$ деталей. Далее для каждой из $n$ деталей работает логарифмическая вставка в мультисет. Получаем, что асимптотическая вычислительная сложность алгоритма $O(n\, \log^2n)$.

Ссылки

Условие задачи на e-olymp
Код решения
Видеозапись разбора задачи Евгением Задорожным на зимней школе по алгоритмам и программированию в Одесском национальном университете иемни И.И.Мечникова: