e-olymp 4557. Одинокий король

Задача


Одинокий король долго бродил по бесконечной шахматной доске. Известна последовательность из [latex]n[/latex] его ходов (вверх, вниз, влево, вправо, вверх-влево и т.п.) — возможные ходы короля показаны на рисунке снизу.

Определите, побывал ли король дважды на одном и том же поле за свои [latex]n[/latex] ходов.

Входные данные

В первой строке задано общее число ходов короля [latex]n[/latex] [latex](0 ≤ n ≤ 1000)[/latex]. В последующих [latex]n[/latex] строках заданы направления перемещения короля: строка под номером [latex]i + 1[/latex] задаёт направление перемещения короля на [latex]i[/latex]-ом ходу.

Выходные данные

Выведите единственное число — номер хода, на котором король впервые попал на какую-то клетку во второй раз. Если же такое событие не произошло, то в первой строке выведите сообщение «Ok» (без кавычек), а во второй — манхэттенское расстояние между начальной и конечной точками путешествия одинокого короля.

Напоминаем, что манхэттенское расстояние между точками с координатами [latex](x_1, y_1)[/latex] и [latex](x_2, y_2)[/latex] определяется по формуле: [latex]d = |x_2 — x_1| + |y_2 — y_1|[/latex].

Тесты

Входные данные Выходные данные
[latex]5[/latex] [latex]1[/latex] [latex]2[/latex] [latex]4[/latex] [latex]7[/latex] [latex]4[/latex] [latex]4[/latex]
[latex]5[/latex] [latex]1[/latex] [latex]2[/latex] [latex]4[/latex] [latex]6[/latex] [latex]4[/latex] [latex]Ok[/latex]
[latex]2[/latex]
[latex]8[/latex] [latex]3[/latex] [latex]3[/latex] [latex]7[/latex] [latex]7[/latex] [latex]5[/latex] [latex]5[/latex] [latex]3[/latex] [latex]3[/latex] [latex]3[/latex]
[latex]7[/latex] [latex]2[/latex] [latex]4[/latex] [latex]2[/latex] [latex]8[/latex] [latex]8[/latex] [latex]1[/latex] [latex]5[/latex] [latex]Ok[/latex]
[latex]3[/latex]
[latex]12[/latex] [latex]2[/latex] [latex]3[/latex] [latex]4[/latex] [latex]1[/latex] [latex]3[/latex] [latex]2[/latex] [latex]5[/latex] [latex]6[/latex] [latex]8[/latex] [latex]2[/latex] [latex]1[/latex] [latex]7[/latex] [latex]10[/latex]

Код программы

Решение задачи

Создаем глобальный массив(изначально заполненный нулями). Задаем координаты короля по центру int xPos=1001, yPos=1001;. Затем в цикле вводим все ходы короля и проверяем был ли он уже в этой ячейке, если нет — ставим [latex]1[/latex], и вводим ход короля и задаем ему новые координаты, если да — выводим номер хода и завершаем программу. Если король ни разу не попал на ячейку, в которой уже был, то программа находим манхэттенское расстояние между начальными координатами и конечными. Задача решена.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 396. Дождь

Задача

Капля дождя падает вертикально вниз с большой высоты на землю. На пути у капли могут встретиться препятствия, которые изменяют ее путь к земле.

Как это выглядит на координатной плоскости

Будем рассматривать двумерный вариант (на плоскости) этой задачи. Пусть препятствия – это наклонные непересекающиеся отрезки, а капля имеет точечные размеры. Капля падает вертикально вниз из точки, расположенной выше любого из препятствий. Если капля при падении соприкасается с отрезком-препятствием, то она стекает по отрезку вниз, пока не упадет вертикально вниз с меньшего по высоте конца отрезка.

Напишите программу, которая по координате $X$$0$ точки появления капли над землей вычисляет координату $X$ точки соприкосновения капли с землей $(Y  =  0)$.

Входные данные

Во входном файле в первой строке содержатся два целых числа через пробел – координата $X$$0$ точки появления капли $(0  < X$$0$ $<  10000)$ и количество отрезков-препятствий $N (0  ≤ N  ≤  100)$. Далее следует $N$ строк, каждая из которых содержит четыре разделенные пробелами числа $x$$1$,  $y$$1$,  $x$$2$,  $y$$2$ – координаты левого и правого концов отрезка-препятствия (все числа целые и находятся в диапазоне от $0$ до $10000$,  $x$$1$ $ < x$$2$,  $y$$1$ $≠$ $y$$2$$)$. Отрезки не пересекаются и не соприкасаются.

Выходные данные

В выходной файл вывести одно целое число – координату $X$ точки соприкосновения капли с землей.

Тесты

Входные данные Выходные данные
30 4
25 35 40 30
1 32 20 30
33 22 50 29
18 10 33 19
18
12 5
12 9 13 5
17 8 19 5
13 10 10 7
6 17 4 12
13 4 5 12
 13
40 3
12 30 21 39
41 5 45 70
20 30 25 35
 40
70 6
45 75 598 37
489 48 726 47
673 873 46 36
60 735 373 762
483 73 364 59
462 375 583 457
726

Код программы

Решение задачи

Сортируем наш динамический массив по наибольшим координатам $y$ и, если $y$ равны, по координатам $x$.

Далее составим алгоритм решения задачи:

  1. Если $X$ $ ∈ [x$$1$$, x$$2$$]$, то наша капля пересечется с данной прямой. В противном случае мы просто игнорируем данное препятствие.
  2. Тогда мы сравниваем координаты $y$$1$ и $y$$2$, выбираем из них наименьшее и присваиваем соответствующую координату $x$$1$ или $x$$2$ координате нашей капли $X$.
  3. Повторяем до тех пор, пока не будут обработаны все препятствия и выводим последнюю присвоенную координату $X$ нашей капли, так как она и будет координатой $x$ соприкосновения капли с зимой.

Ссылки

Условие задачи на e-olymp.com
Решение задачи на ideone.com

e-olymp 1489. Шоколад

Задача

Петя очень любит шоколад. И Маша очень любит шоколад. Недавно Петя купил шоколадку и теперь хочет поделиться ею с Машей. Шоколадка представляет собой прямоугольник $n \cdot m$, который полностью состоит из маленьких шоколадных долек — прямоугольников $2 \cdot 1$.

Петя делит шоколадку на две части, разламывая ее вдоль некоторой прямой, параллельной одному из краев шоколадки. Ни Петя, ни Маша не любят ломаные дольки, поэтому Петя хочет разломать шоколадку так, чтобы ни одна долька не была повреждена.

Помогите Пете поделиться шоколадкой с Машей.

Входные данные

В первой строке входного файла два целых числа $n$ и $m$ ($1 \le n, m \le 20$, хотя бы одно из чисел $n$ и $m$ — четно). Далее следуют $n$ строк по $m$ чисел в каждой — номера долек, в которые входят соответствующие кусочки шоколадки. Дольки имеют номера от $1$ до $\frac{n \cdot m}{2}$, и никакие две дольки не имеют одинаковые номера.

Выходные данные

В выходной файл выведите «$Yes$», если Петя может разломать шоколадку, не повредив дольки. Иначе выведите «$No$».

TESTS

Входные данные Выходные данные
2 3
1 1 2
3 3 2
Yes
5 6
1 2 2 3 3 4
1 5 6 7 7 4
8 5 6 9 10 10
8 11 11 9 12 13
14 14 15 15 12 13
No
4 7
1 1 2 5 8 11 6
2 14 4 7 3 9 5
3 7 10 6 13 2 3
4 3 8 12 5 7 7
Yes

Код решения

 

Решение

Для решения данной задачи нужно представить шоколадку как двухмерный массив и проверить, можно ли разломать плитку шоколада ровно, то есть одинаковое ли количество «строк» и «столбцов» шоколада. Если так, то возвращается значение true, и false в обратном случае. Для этого были созданы функции BreakRow и BreakColumn с возвращаемым значением типа bool. Затем стоит проверить возвращаемое значение. Если одна из функций принимает значение true, то выводим положительный ответ. В противном случае ответ отрицательный.

Ссылки

Условие решения на e-olymp.com
Код решения на ideone.com

e-olymp 5282. Седловые точки

Задача

Задана матрица [latex]K[/latex], содержащая [latex]n[/latex] строк и [latex]m[/latex] столбцов. Седловой точкой этой матрицы назовём элемент, который одновременно является минимумом в своей строке и максимумом в своём столбце.
Найдите количество седловых точек заданной матрицы.
Saddle point

Входные данные

Первая строка содержит целые числа [latex]n[/latex] и [latex]m[/latex]. [latex](1 ≤ n, m ≤ 750)[/latex]. Далее следуют [latex]n[/latex] строк по [latex]m[/latex] чисел в каждой. [latex]j[/latex]-ое число [latex]i[/latex]-ой строки равно [latex]k_{ij}[/latex]. Все [latex]k_{ij}[/latex] по модулю не превосходят [latex]1000[/latex].

Выходные данные

Выведите количество седловых точек.

Тесты

# Входные данные Выходные данные
1 2 2
0 0
0 0
4
2 3 3
1 2 3
4 3 6
9 5 3
0
3 4 4
1 2 0 0
2 2 4 4
0 0 1 1
3 4 2 1
0
4 2 2
3 2
1 1
1

Код программы

Решение задачи

Для каждой строки, будем осуществлять два прохода. В первом найдем минимальное число, а во втором, если значение очередного элемента будет являться в ней минимумом, то проверим будет ли оно максимумом в своем столбце таким образом, что если элемент заранее созданного массива [latex]([/latex] в котором изначально лежат все [latex]Unknown ([/latex] заранее созданная константа равная [latex]1001[/latex][latex] ([/latex] так как по условию, числа которые мы вводим не больше чем [latex]1000 ) ) )[/latex] не равен [latex]Unknown[/latex], то просто сравним элемент массива с минимумом, иначе найдем максимум для данного столбца и положим его в массив, о котором шла речь ранее и сравним уже это число с минимумом строки. Если они совпадают, то это и есть седловая точка!

Ссылки

Условие задачи на e-olymp.com.

Код решения на ideone.com.

e-olymp 88. Месть Ли Чака

Задача

“Я хочу быть пиратом!” Мы напоминаем эту известную фразу Гайбраша Трипвуда из серии компьютерных игр Monkey Island («Остров Обезьян»). Гайбраш участвовал в другом приключении и серьезно нуждается в Вашей помощи, потому что на этот раз это вопрос жизни и смерти. Наш Гайбраш в последнем приключении приплыл на таинственный остров (ТО), чтобы найти подсказку для еще более таинственного сокровища. Тем временем Ли Чак узнал об этой поездке и подготовил ловушку Гайбрашу на ТО. ТО имеет прямоугольную форму (поскольку мы знаем, что он таинственный) и его карта может рассматриваться как матрица такой же размерности. Назовем каждый элемент матрицы участком. Некоторые участки могут быть заполнены горными скалами. Такие участки считаются непроходимыми.

Рассмотрим остров, карта которого изображена на рисунке. Эта карта представляет собой матрицу с $6$ строками и $7$ столбцами. Комнаты «R» показывают участки со скалами. Гайбраш должен начинать с участка, отмеченного «g», а Ли Чак – с участка «l». У Гайбраша есть шанс сбежать с этого проклятого острова, если он достигнет конечного участка, который отмечен символом «e» на карте. Каждую единицу времени Гайбраш может пойти на соседний с текущим участок по горизонтали или вертикали (но не по диагонали), если в нем нет скал, или не двигаться. То есть он может переместиться на один участок вверх, вниз, влево, вправо или вообще остаться на месте. В приведенном примере Гайбраш в первый момент времени может остаться или пойти в комнату слева от него. Все указанные правила применяются также и к движению Ли Чака, но с одним исключением: он не может войти на конечный участок (отмеченный «e»). То есть, каждую единицу времени Ли Чак может пойти на один участок вверх, вниз, влево, вправо (если только это не «R» или «e») или стоять. Мы предполагаем, что каждую единицу времени сначала делает ход (или стоит) Гайбраш, а затем ходит (или стоит) Ли Чак, в следующую единицу времени опять сначала Гайбраш, затем Ли Чак и так далее. Если Гайбраш и Ли Чак встретятся на одном участке, то Ли Чак немедленно убьет нашего бедного Гайбраша.

Ваша задача состоит в том, чтобы узнать, есть ли по крайней мере один безопасный путь или нет. Безопасный путь – это путь для Гайбраша (от «g» до «e») такой, что Ли Чак не может поймать Гайбраша на этом пути независимо от того, что он (Ли Чак) делает каждую единицу времени.

Входные данные

Первая строка входа содержит единственное целое число — количество тестовых случаев. Далее идут строки данных для тестовых случаев. Каждый тест начинается со строки, содержащей два целых числа $R$ и $C$ ($4 \leq R, C \leq 30$), которые обозначают количество строк и столбцов карты таинственного острова соответственно. Далее следуют $R$ строк, каждая содержит $C$ символов, представляющих карту. Есть единственные отметки «g», «l» и «e» на карте.

Выходные данные

Для каждого теста необходимо вывести единственную строку. Если существует, по крайней мере, хотя бы один безопасный путь для тестового случая, должно быть выведено слово «YES», и слово «NO», если такого пути нет. Предполагается, что если существует безопасный путь, то необходимо не более $1000$ единиц времени для прохождения по нему Гайбраша.

Тесты

Входные данные Выходные данные
$531$ $348$ $1645$ $911$
$1784353$ $453345$ $463973$ $214457$
$39252362$ $345673$ $786536$ $302328$
$68790234$ $679643$ $789057$ $281232$
$324$ $8564$ $45074547$ $32984424$

Код программы

Решение задачи

Предположим, что существует безопасный для Гайбраша маршрут. Это означает, что Ли Чак не может перехватить его ни в одной точке этого маршрута, то есть, что в любую точку маршрута Гайбраш попадает как минимум на один ход раньше, чем Ли Чак. В противном случае безопасного хода нет.
Представим карту острова в виде неориентированного графа, вершинами которого в случае Гайбраша являются все участки, кроме участков с пометкой «R», а для Ли Чака — все участки, кроме участков с пометками «R» и «e». Две вершины будут соединяться ребром, если они соответствуют участкам, имеющим общую сторону. С помощью поиска в глубину найдем минимальное количество шагов, за которое Ли Чак попадает в каждую клетку, в которую он может попасть. Аналогично реализуем поиск в глубину для Гайбраша с той лишь разницей, что Гайбраш должен миновать те вершины графа, в которые он будет добираться дольше, чем Ли Чак. Если при этом найдется путь, соединяющий вершину, соответствующую начальному местоположению Гайбраша с вершиной, соответствующую цели, то он сможет спастись, в противном случае -нет.

Ссылки

Условие задачи на e-olymp
Решение на e-olymp
Код решения на Ideone

AL1

Условие задачи

Вводится последовательность, состоящая из [latex]N[/latex] пар символов [latex](a_i, b_i)[/latex]. Каждая пара определяет порядок предшествования символов, например, пара [latex](b, c)[/latex] означает, что символ [latex]b[/latex] предшествует символу [latex]c[/latex]. Из порядка [latex](b, c)[/latex] и [latex](c, a)[/latex] следует порядок [latex](b, a)[/latex]. Необходимо определить, является ли введенная последовательность:

а) полной, т.е. все использованные для формирования пар символы (выбросив повторяющиеся) можно выстроить в цепочку [latex]A_{1},A_{2}, \cdots ,A_{s}[/latex] в порядке предшествования;

б) противоречивой, т.е. для некоторых символов [latex]x,y[/latex] можно получить одновременно порядок как [latex](x, y)[/latex] так и [latex](y, x)[/latex];

Тесты

Входные данные Результат
4
a b
b c
c d
b d
полный порядок
3
2 a
8 c
c b
порядок неполный
3
2 a
8 c
a 8
полный порядок
4
2 a
8 c
c 2
a c
Порядок противоречив
10
a 5
5 4
b 3
3 4
5 3
b 5
a b
4 *
* 0
4 0
полный порядок

Код программы

Решение

Общая идея решения

Эта часть решения взята отсюда

Пусть при записи этих [latex]N[/latex] пар встретилось всего [latex]K[/latex] различных символов, которые образуют множество [latex]X[/latex].

Идея решения задачи состоит в последовательном присвоении каждому символу [latex]s[/latex] из [latex]X[/latex] номера, который определяет количество [latex]P(s)[/latex] элементов, предшествующих ему, с учетом свойства транзитивности (из [latex](c, b)[/latex] и [latex](b, a)[/latex] следует [latex](c, a)[/latex]). Это осуществляется следующим образом:

Первоначально предполагается, что каждому символу не предшествует ни один символ, т.е. [latex]P(s)=0[/latex] для любого [latex]s[/latex].

При просмотре очередной пары [latex](x, y)[/latex] символу y присваивается большее из значений [latex]P(x)+1, P(y)[/latex].

Очевидно, что при первом просмотре всех пар из входной последовательности определятся все упорядоченные цепочки длины 2, т.е. состоящие из 2 элементов. Поэтому номера некоторых элементов будут как минимум 1. При каждом из следующих просмотров входной строки возможно несколько вариантов.

  1. Не произошло изменения ни одного из номеров символов. Если при этом номера символов различны и лежат в пределах от 0 до [latex]K-1[/latex], то эта нумерация определяет полный порядок. Иначе порядок неполный.
  2. Номер некоторого символа превысил [latex]K-1[/latex]. Это произошло потому, что рост номеров неограничен, т.е. осуществляется циклически. Следовательно порядок противоречив.

Легко понять, что число просмотров не превысит [latex]N[/latex].

Некоторые аспекты реализации

Нам необходимо будет несколько раз просматривать все пары, поэтому их не получится обрабатывать поточно. Будем хранить их в отдельном двумерном массиве.

Воспользуемся тем фактом, что символы воспринимаются компьютером, как числа. Заведем для номеров символов в последовательности массив chars на 256 элементов, поскольку тип данных char может принимать значения от 0 до 255. Это позволит обращаться к элементу массива, соответствующий какому-то символу напрямую, а не используя ассоциативный массив.  Это дает выигрыш в скорости, хотя и с некоторым увеличением расхода памяти.

Изначально каждый элемент массива chars пусть будет равен -1. Затем, пройдя все пары, присвоим каждому символу номер 0 в этом массиве. Таким образом, мы в дальнейшем сможем определить, что символ входит в нашу последовательность, поскольку его номер неотрицательный.

Если при очередном просмотре входной строки не произошло изменений, отсортируем массив номеров и проверим каждый ли предыдущий неотрицательный меньше следующего на 1.

ссылка на код на ideone

ссылка на условие задачи