D2631. Сумма ряда с заданной точностью

Задача

Найти количество членов ряда, требуемых для получения значения  [latex]\sum\limits_{ n=1 }^{ \infty }{ { e }^{ -\sqrt [ 3 ]{ n } } } [/latex] с точностью до [latex]\varepsilon [/latex], а также найти само значение суммы с заданной точностью.

Входные данные: 

Точность [latex]\varepsilon [/latex].

Выходные данные:

Количество членов ряда [latex]n[/latex].
Значение суммы [latex]\sum\limits_{ n=1 }^{ \infty }{ { e }^{ -\sqrt [ 3 ]{ n } } } [/latex].

Тесты

 №  Входные данные  Выходные данные
 [latex]\varepsilon[/latex]  [latex]n[/latex]  [latex]\sum\limits_{ n=1 }^{ \infty }{ { e }^{ -\sqrt [ 3 ]{ n } } } [/latex]
 1  0.01  98  4.74785
 2  1e-7  4188  5.71199
 3  1e-9  8900  5.71208
 4  1  1  0.367879

Код программы

Решение

Докажем, что ряд [latex]\sum\limits_{ n=1 }^{ \infty }{ { e }^{ -\sqrt [ 3 ]{ n } } } [/latex] сходится. Обозначим общий член данного ряда [latex]x_n[/latex]. Поскольку все члены ряда положительны, воспользуемся предельным признаком сравнения рядов. Для сравнения возьмём сходящийся ряд [latex]\sum\limits_{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 } } } [/latex], общий член которого обозначим [latex]b_n[/latex]: [latex]\lim\limits_{ n\rightarrow \infty }{ \frac { x_n }{ b_n } }=\lim\limits_{ n\rightarrow \infty }{ { e }^{ -\sqrt [ 3 ]{ n } }{ n }^{ 2 } }=K[/latex], тогда данный ряд сходится, если [latex]0<K<\infty [/latex], либо [latex]K=0[/latex].
[latex]\lim\limits_{ n\rightarrow \infty }{ { e }^{ -\sqrt [ 3 ]{ n } }{ n }^{ 2 } }=\lim\limits_{ n\rightarrow \infty }{ { e }^{ -\sqrt [ 3 ]{ n } }{ e }^{ {2}{\ln { \left( n \right)} } } }=\lim\limits_{ n\rightarrow \infty }{ { e }^{ -\sqrt [ 3 ]{ n }+{ {2}{\ln { \left( n \right)} } } }}={ e }^{ -\infty }=0 [/latex].
[latex]K=0[/latex], а значит ряд [latex]\sum\limits_{ n=1 }^{ \infty }{ { e }^{ -\sqrt [ 3 ]{ n } } } [/latex] сходится и значение суммы является конечным числом. Тогда для сколь угодно малого [latex]\varepsilon >0[/latex] найдётся номер, начиная с которого каждый последующий член ряда меньше [latex]\varepsilon[/latex]

Ссылки