D2655Б. Сумма ряда с заданной точностью

Задача

Сколько примерно надо взять членов ряда, чтобы найти его сумму с точностью до [latex]10^{-5}[/latex], если [latex]\sum\limits_{n=1}^\infty \frac{2^n}{\left(n+1\right)!}[/latex]?

Входные данные

Заданная точность.

Выходные данные

Количество взятых членов ряда и их сумма.

Тесты

Входные данные Выходные данные
[latex]\varepsilon[/latex] [latex]k[/latex] [latex]\sum\limits_{n=1}^{k} \frac{2^n}{\left(n+1\right)!}[/latex]
1e-5 11 2.194527283416172
1 2 1.666666666666667
0.5 3 2.000000000000000

Код программы

Решение задачи

Для удобства введём обозначение: [latex]x_{n}=\frac{2^n}{\left(n+1\right)!}[/latex].
Чтобы доказать, что данный нам ряд [latex]\sum\limits_{n=1}^\infty \frac{2^n}{\left(n+1\right)!}[/latex] сходится, воспользуемся признаком Даламбера:
Пускай [latex]\lim\limits_{n \to \infty} \frac{x_{n+1}}{x_{n}} = D[/latex]. Ряд [latex]\sum\limits_{n=1}^\infty x_n[/latex] сходится, если [latex]D < 1[/latex]. В частности, если [latex]D = 0[/latex]
Найдём [latex]\lim\limits_{n \to \infty} \frac{x_{n+1}}{x_{n}}[/latex].
[latex]\lim\limits_{n \to \infty} \frac{x_{n+1}}{x_{n}} = \lim\limits_{n \to \infty} \left( \frac{2^{n+1}}{\left( n+2 \right)!} \div \frac{2^{n}}{\left( n+1 \right)!} \right) = \lim\limits_{n \to \infty} \left( \frac{2 \cdot 2^{n}}{\left( n+1 \right)! \cdot \left( n+2 \right)} \cdot \frac{\left( n+1 \right)!}{2^{n}} \right) = \lim\limits_{n \to \infty} \frac{2}{n+2} = 0[/latex] Для доказательства последнего равенства [latex]\left( \lim\limits_{n \to \infty} \frac{2}{n+2} = 0 \right)[/latex] воспользуемся определением предела последовательности:
Число [latex]a[/latex] называют пределом последовательности, если для любой точности [latex]\varepsilon>0[/latex] найдётся/существует такой номер, зависящий от [latex]\varepsilon[/latex], начиная с которого все элементы последовательности попадают в интервал [latex]\left( a-\varepsilon; a+\varepsilon \right)[/latex].
В нашем случае число [latex]a[/latex] равно нулю. Поэтому доказательство будет следующим:
[latex]\forall \varepsilon>0[/latex] [latex]\exists N_{\varepsilon} \in \mathbb{N}[/latex]: [latex]\forall n\ge N_{\varepsilon}[/latex], [latex]\left| \frac{2}{n+2} \right| < \varepsilon[/latex]. Находим [latex]N_{\varepsilon}[/latex]:
[latex]\left| \frac{2}{n+2} \right| < \left| \frac{2}{n} \right| = \frac{2}{n} < \varepsilon [/latex]
[latex]\frac{2}{n} < \varepsilon[/latex]
[latex]n > \frac{2}{\varepsilon} \Rightarrow N_{\varepsilon} = \left[ \frac{2}{\varepsilon} \right] + 1 \Rightarrow \lim\limits_{n \to \infty} \frac{2}{n+2} = 0[/latex].

Итог:
Так как ряд сходится, сумма ряда стремится к некоторой константе, и можно определить точный номер [latex]k[/latex], при котором элемент (а следовательно — и сумма) ряда будет удовлетворять заданной точности. Этой точностью будет значение переменной epsilon, которое задаёт пользователь.

Ссылки

Related Images:

Добавить комментарий