e-olimp 3837. Выражения

Задача

Арифметические выражения, как правило, записываются с операторами между двумя операндами (такая запись называется инфиксной нотацией). Например, (x + y) * (zw) — арифметическое выражение в инфиксной нотации. Однако легче написать программу, вычисляющую значение выражения, когда оно находится в постфиксной нотации (известная как обратная польская нотация). В постфиксной нотации оператор записывается за своими двумя операндами, которые и сами в могут быть выражениями. Например, x y + z w — * является постфиксной нотацией приведенного выше выражения. Заметим, что для такой записи скобки не нужны.

Для вычисления выражения, заданного в постфиксной нотации, используется алгоритм, работающий со стеком. Стек — это структура данных, поддерживающая две операции:

  1. push: число кладется на верх стека.
  2. pop: число снимается с вершины стека.

Во время вычисления выражение обрабатывается слева направо. Если приходит число, то кладем его на стек. Если приходит оператор, то извлекаем два числа из стека, применяем к ним оператор и результат кладем обратно в стек. Следующий псевдокод обрабатывает оператор O:

a := pop();

b := pop();

push(b O a);

Результатом выражения будет единственное число, оставшееся в стеке.

Предположим, что мы используем вместо стека очередь. Очередь также имеет операции push иpop, но их смысл немного другой:

  1.    push: число вставляется в конец очереди.
  2.    pop: из начала очереди извлекается число.

Можете ли Вы переписать заданное выражение так, чтобы алгоритм, использующий очередь при его вычислении, давал тот же результат, что и алгоритм вычисления со стеком?

 

Пояснения к решению

Если задана правильная строка в постфиксной нотации, то алгоритм её вычисления на основе стека выглядит следующим образом:

  1. Просматриваем строку слева направо
  2. Если встречаем переменную, помещаем её в конец стека/очереди
  3. Если встречаем символ оператора  * , то выполняем следующие действия: снимаем со стека a, снимаем со стека b  и  кладём на стек  b * a.

По условию задачи, мы должны обрабатывать строки, используя вместо стека очередь, поэтому описанные выше действия примут следующий вид:  снимаем с очереди a, снимаем с очереди b  и  кладём в конец очереди  b * a.

Постфиксную запись, рассчитанную на обработку посредством стека, будем называть s-постфиксной, а рассчитанную на обработку очередью — q-постфиксной.

Две записи «вычислятся одинаково» в том и только в том случае, когда соответствующие им деревья синтаксического разбора (англ.: parse tree, далее — ДСР) одинаковы. Идея приведённого ниже алгоритма состоит примерно в следующем: на основе s-постфиксной записи строим ДСР, обходя которое специальным образом, получаем q-постфиксную запись. Нужно обходить дерево по уровням справа налево (под уровнем дерева подразумевается множество всех вершин дерева, равноудалённых от корня; уровни дерева естественным образом нумеруются: корень расположен на уровне 0 и так далее). В приведённом ниже коде функция  get_levels  генерирует уровни ДСР на основе s-постфиксной нотации в виде вектора строк, k-ая компонента которого соответствует k-му уровню ДСР заданной строки, вершины которого (если таковые имеются) перечислены справа налево. Поскольку у ДСР может быть не больше уровней, чем символов в строке, то создаём вектор как раз с таким числом компонент и инициализируем его компоненты пустыми строками.

Корректность функции get_levels можно доказать индукцией по длине строки, отметим, что если строка содержит более одного элемента, то она имеет вид ФGО, где Ф и G — правильные строки, О — символ оператора. Запустить рекурсивно функцию с предпоследней позиции — всё равно, что применить её к строке G. ДСР этой строки является левым поддеревом для ДСР исходной строки и k-ый уровень этого дерева является (k+1)-ым уровнем ДСР исходной строки (именно поэтому вызываем функцию с параметром depth на 1 больше). По индукционному предположению, дойдя до начала строки G, функция корректно «расставит» уровни ДСР этой строки (с учётом + 1) и завершит свою работу.  Аналогично будут правильно расставлены уровни ДСР строки Ф, которое является правым поддеревом исходной строки. Таким образом, все вершины ДСР исходной строки будут правильно расставлены, а поскольку рекурсия вызывается сначала для левого, а потом для правого её поддерева, то и перечислены вершины на каждом уровне будут справа налево.

 

Код на С++

Ссылка на программу в ideone.

 

Код на Java

Ссылка на программу в ideone.

 

Вустянюк Ігор Дмитрович
Вустянюк Ігор Дмитрович

Latest posts by Вустянюк Ігор Дмитрович (see all)

One thought on “e-olimp 3837. Выражения

Добавить комментарий