e-olimp 4852. Кратчайшее расстояние

Задача

Дан ориентированный граф. Найдите кратчайшее расстояние от вершины x до всех остальных вершин графа.

Входные данные

В первой строке содержатся два натуральных числа [latex]n[/latex] и [latex]x[/latex]  [latex]\left ( 1\leq n\leq 1000,1\leq x\leq n \right )[/latex] — количество вершин в графе и стартовая вершина соответственно. Далее в [latex]n[/latex] строках по [latex]n[/latex] чисел — матрица смежности графа: в [latex]i[/latex]-ой строке на [latex]j[/latex]-ом месте стоит [latex]1[/latex], если вершины [latex]i[/latex] и [latex]j[/latex] соединены ребром, и [latex]0[/latex], если ребра между ними нет. На главной диагонали матрицы стоят нули.

Выходные данные

Выведите через пробел числа [latex]d_1,d_2,[/latex][latex]\ldots[/latex][latex],d_i[/latex], где [latex]d_i[/latex] равно[latex]-1[/latex], если путей между [latex]x[/latex] и [latex]i[/latex] нет, в противном случае это минимальное расстояние между [latex]x[/latex] и [latex]i[/latex].

Тесты 

 Входные данные  Выходные данные
3 1
0 1 0
0 0 0
0 0 0
 0 1 -1
6 5
0 1 1 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 1 1 0 0
0 1 0 0 0 0
2 2 1 1 0 -1
3 1
0 1 0
1 0 1
0 1 0
0 1 2

 

Реализация

Засчитанное решение на e-olimp.com

Код на ideone.com

Решение

Для решения данной задачи необходимо применить  алгоритм Дейкстры . А именно, мы храним в массиве текущую длину наиболее короткого пути из заданной вершины во все остальные вершины графа. Положим, что изначально длина такого пути равна бесконечности ( при реализации просто используем достаточно большое число). А длина пути из заданной вершины до самой себя равна нулю. Обозначим, что вершина может быть помечена или не помечена. Изначально все вершины являются не помеченными. Далее выбираем  вершину [latex]v[/latex] с наименьшей длиной пути до заданной вершины и помечаем ее. Тогда просматриваем все ребра, исходящие из вершины [latex]v[/latex]. Пусть эти ребра имеют вид  [latex]\left ( v,t_0 \right )[/latex]. Тогда для каждой такой вершины [latex]t_0[/latex] пытаемся найти наиболее коротки путь из заданной вершины. После чего снова выбираем еще не помеченную вершину и проделываем вышеописанный алгоритм снова до тех пор, пока не останется не помеченных вершин. Найденные расстояния и будут наименьшими.

Добавить комментарий