e-olymp 1072. Химические реакции

Условие

Задача взята с сайта e-olymp, полное условие можно прочитать здесь.

Входные данные

В первой строке находится формула — левая часть уравнения, во второй- одно число [latex]N (1 \leq N \leq 10)[/latex] — количество рассматриваемых правых частей, в каждой из последующих [latex]N[/latex] строк — одна формула — предполагаемая правая часть уравнения.

Длина формулы не превосходит [latex]100[/latex] символов, каждый отдельный химический элемент встречается всего не более [latex]10000[/latex] раз в каждой формуле.

(Примечание: понятие формулы в данном алфавите можно прочитать по ссылке выше.)

Выходные данные

Для каждой из [latex]N[/latex] заданных строк вывести одну строку вида

формула левой части==формула правой части

если общее количество вхождений каждого отдельного химического элемента в левую часть равно общему числу вхождений этого химического элемента в правую часть. В противном случае выведите:

формула левой части!=формула правой части

Здесь формула левой части должна быть заменена посимвольной копией формулы левой части, как она дана в первой строке входного файла, а формула правой части — замещена точной копией формулы правой части, как она дана во входном файле. В строках не должно быть пробелов.

Решение (вспомогательные функции)

Так как задача достаточно объемная, напишем ряд вспомогательных функций:

  1. Определяет, является ли символ цифрой.
  2. Определяет, является ли символ буквой в верхнем регистре.
  3. Определяет, является ли символ буквой в нижнем регистре.
  4. Будем хранить содержимое формулы используя структуру map (карта), ключами будут выступать названия элементов (строки), значениями — количества их вхождений. Если элемента в карте нет, добавляем пару <элемент, кол-во>, иначе — прибавляем к старом числу вхождений новое. За это отвечает следующая функция.
  5. Для простоты разобьем формулу на подформулы (по знаку [latex]+[/latex], если он встречается), и будем работать с каждой формулой по отдельности. Функция разбивает строку на подстроки по знаку [latex]+[/latex] и заполняет ими вектор [latex]storage[/latex] (так как мы не знаем кол-во подформул заранее, вектор предпочтительнее массива).
  6. По условию, перед каждой подформулой может идти множитель, относящейся ко всей подформуле. Функция возвращает множитель ( [latex]1[/latex], если множитель не записан явно).
  7. Основная функция. Добавляет в карту [latex]content[/latex] содержимое подформулы.
  8. Обрабатывает формулу. Просто вызывает функции №[latex]6[/latex] и №[latex]7[/latex] по очереди для каждой из подформул (элементов из [latex]subformulas[/latex]).

Решение (основной алгоритм)

Все вспомогательные функции реализованы достаточно просто (см. код и комментарии). Рассмотрим основную функцию, алгоритм работы которой, по сути, почти является алгоритмом решения задачи.

Тут:

  1. [latex]formula[/latex] — подформула обрабатываемой формулы (без общего множителя);
  2. [latex]multiplier[/latex] — множитель, определяется предыдущей функцией, перед вызовом данной;
  3. [latex]content[/latex] — карта, куда записываются элементы всех подформул текущей формулы (доступ осуществляется по адресу).

Алгоритм разделяется на 2 случая, в зависимости от наличия скобок. Предположим, скобок в подформуле (далее — просто формуле) нет. Заведем переменные [latex]name[/latex] (название элемента. тип string) и [latex]coefficient[/latex] (задний коэффициент, тип string). Тогда, проходя по порядку по символам формулы, будем выполнять следующие действия в зависимости от текущего символа([latex]c[/latex]):

  1. [latex]c[/latex] — цифра: добавляем его в конец строки [latex]coefficient[/latex];
  2. [latex]c[/latex] — буква в нижнем регистре: добавляем его в конец строки [latex]name[/latex];
  3. [latex]c[/latex] —  буква в верхнем регистре: если строка [latex]name[/latex] — пустая (первый элемент в формуле), то добавляем его в конец строки [latex]name[/latex]. Иначе, сперва обнуляем [latex]name[/latex], потом добавляем. Тогда, если строка [latex]coefficient[/latex] — пустая, присваиваем [latex]coefficient=[/latex]»[latex]1[/latex]». Получаем количество вхождений элемента как [latex]multiplier*stoi(coefficient)[/latex], где stoi() — стандартная функция, преобразующая число к строке. Затем добавляем в карту элемент и полученное кол-во вхождений.

(Примечание: пункт [latex]3[/latex] для последнего элемента (кроме обновления значения [latex]name[/latex]) придется повторить отдельно.)

Если же в формуле имеются скобки, то:

  1. Находим первую открывающую скобку.
  2. Находим соответствующую ей закрывающую скобку.
  3. Для выражения в скобках вычисляем задний коэффициент (см. код), заносим в переменную [latex]newMultiplier[/latex] значение множителя для выражения внутри скобок.
  4. Рекурсивно вызываем функцию getContent() для:
    1. Выражения перед открывающей скобкой, если формула не начинается с нее.
      ([latex]begin[/latex] — номер первого символа внутри скобок.)
    2. Выражения внутри скобок.
      ([latex]end[/latex] — номер закрывающей скобки.)
    3. Выражения после закрывающей скобки или заднего коэффициента, если присутствует (если только скобка/коэффициент не является концом формулы).
      ([latex]afterEnd[/latex] — следующий после скобки/коэффициента символ.)

Этот алгоритм фактически является решением задачи. Теперь в методе [latex]main[/latex] надо всего лишь обработать главную формулу, а затем для каждого случая в цикле — сравниваемую с ней формулу, сравнив после содержимое их карт (сравнение осуществляется просто используя оператор сравнения ==). Обработка подразумевает последовательный вызов функций  split() и  process().

Тесты

Ввод Вывод
1 C2H5OH+3O2+3(SiO2)
6
2CO2+3H2O+3SiO2
2C+6H+13O+3Si
99C2H5OH+3SiO2
3SiO4+C2H5OH
C2H5OH+3O2+3(SiO2)+Ge
3(Si(O)2)+2CO+3H2O+O2
C2H5OH+3O2+3(SiO2)==2CO2+3H2O+3SiO2
C2H5OH+3O2+3(SiO2)==2C+6H+13O+3Si
C2H5OH+3O2+3(SiO2)!=99C2H5OH+3SiO2
C2H5OH+3O2+3(SiO2)==3SiO4+C2H5OH
C2H5OH+3O2+3(SiO2)!=C2H5OH+3O2+3(SiO2)+Ge
C2H5OH+3O2+3(SiO2)==3(Si(O)2)+2CO+3H2O+O2
2 2H2O
5
HHOHHO
2H+H2+(O(O))
2((H2)O)
HOHHOHe
H4O
2H2O==HHOHHO
2H2O==2H+H2+(O(O))
2H2O==2((H2)O)
2H2O!=HOHHOHe
2H2O!=H4O
3 8Zn+Ar4+Ne
3
Ne(Ar2(Zn)4)2
2Ne(Ar2(Zn)4)
Ne+2Zn2(((((Ar)))))2Zn2
8Zn+Ar4+Ne==Ne(Ar2(Zn)4)2
8Zn+Ar4+Ne!=2Ne(Ar2(Zn)4)
8Zn+Ar4+Ne==Ne+2Zn2(((((Ar)))))2Zn2

Код

Ссылки

Засчитанное решение на e-olymp.

Код на ideaone.

One thought on “e-olymp 1072. Химические реакции