e-olymp 3609. Стартовая скорость

Задача

Кристина Стуй, Олеся Повх, Елизавета Брызгина, Мария Ремень

Женская олимпийская сборная Украины в эстафете 4×100 метров на олимпийских играх в Лондоне в составе (Кристина Стуй, Олеся Повх, Елизавета Брызгина, Мария Ремень)

Несмотря на то, что женская сборная Украины в эстафете [latex]4 \times 100[/latex] метров на олимпийских играх в Лондоне в составе Кристины Стуй, Олеси Повх, Елизаветы Брызгиной и Марии Ремень выступила очень достойно и завоевала бронзовые медали, подобная мысль назойливо мучила и программиста Васю.

Как показали тщательные экспериментальные проверки, модель, построенная им в задаче «Крейсерская скорость» оказалась не совсем точной. Многочасовые наблюдения, проведённые им на тренировках как украинских спортсменок, так и спринтеров из других стран, показали, что некоторые спортсмены во время старта разгоняются, а некоторые притормаживают. Но всё равно, после [latex]25[/latex] стартовых метров дистанции они движутся далее равномерно.

Феномен с «притормаживанием» Васе удалось с точки зрения физики пояснить довольно просто. Во время старта каждый из спортсменов имеет некоторую стартовую скорость, приобретённую в результате мощного отталкивания от стартовых колодок. Эта скорость может быть либо меньше «крейсерской», либо больше. В первом случае спортсмену нужно работать над наращиванием мышц ног для увеличения силы отталкивания. Во втором – мышцы уже наращены, но в результате того, что сила сопротивления воздуха зависит от площади соприкосновения тела спортсмена с ним, во время распрямления спортсмена во время старта эта сила сопротивления возрастает и становится постоянной только после указанных выше [latex]25[/latex] стартовых метров дистанции.

Обрадованный тем, что ему удалось найти разумное объяснение разным стартовым скоростям легкоатлетов, Вася решил узнать скорость каждого из них сразу после отталкивания от стартовых колодок.

Ваша задача помочь в этом Васе, считая, что на первых [latex]25[/latex] метрах дистанции движение легкоатлета является равноускоренным, независимо от того, ускоряется он или замедляется.

Входные данные

В единственной строке задано [latex]2[/latex] вещественных числа, разделённых единичным пробелом, соответственно результат спортсмена на дистанциях [latex]100[/latex] и [latex]200[/latex] метров.

Выходные данные

В единственной строке выведите стартовую скорость спортсмена с точностью не менее [latex]6[/latex]-ти знаков после запятой.

Тесты

Входные данные Выходные данные
[latex]9.63[/latex] [latex]19.32[/latex] [latex]10.844104[/latex]
[latex]9.77[/latex] [latex]19.59[/latex] [latex]10.606721[/latex]
[latex]9.69[/latex] [latex]19.40[/latex] [latex]10.469771[/latex]
[latex]10.02[/latex] [latex]20.12[/latex] [latex]10.548908[/latex]
[latex]9.88[/latex] [latex]19.85[/latex] [latex]10.781564[/latex]

Код программы

Решение задачи

Со школы знаем формулу скорости, [latex]v=\frac{l}{t}[/latex]. Найдем из неё [latex]l=vt[/latex].
Пусть [latex]l_1[/latex] и [latex]l_2[/latex] — это расстояния, на которых спортсмен бежит с «крейсерской» скоростью соотвественно на дистанциях в [latex]100[/latex] и [latex]200[/latex] метров, где [latex]l_1=l-l_p[/latex], где [latex]l[/latex] — это длина дистанции, а [latex]l_p[/latex] — длина разгона (известно из условия задачи). Аналогично для [latex]l_2[/latex]. Заменим [latex]t[/latex] на [latex]t_1-t_p[/latex], где [latex]t_1[/latex] — время, за которое спортсмен пробегает всю дистанцию, а [latex]t_p[/latex] — время разгона на первых [latex]25[/latex]-ти метрах дистанции. Получаем формулы: [latex]l_1=v(t_1-t_p)[/latex] и [latex]l_2=v(t_2-t_p)[/latex]. Из отношения этих формул [latex]\frac {l_1}{l_2}=\frac {v(t_1-t_p)}{v(t_2-t_p)}[/latex], найдем [latex]t_p[/latex]. Имеем [latex]t_p=\frac{l_1t_2-l_2t_1}{l_2-l_1}[/latex]. Подставляем [latex]l_1=v(t_1-t_p)[/latex]. Находим «крейсерскую» скорость спортсмена, [latex]v=\frac{l_1}{t_1-t_p}[/latex]. Из уравнения равноускоренного движения
[latex]x=v_0t \times \frac{at^2}{2}[/latex], где [latex]x=25[/latex] метров (длина разгона). Находим [latex]v_0[/latex] — это и есть стартовая скорость спортсмена. Для этого заменим [latex]a[/latex] на [latex]\frac{v-v_0}{t_p}[/latex]. Приводим подобные и выражаем [latex]v_0[/latex]. В итоге получаем формулу стартовой скорости спортсмена, [latex]v_0=\frac{50-vt_p}{t_p}[/latex]. Задача решена.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

One thought on “e-olymp 3609. Стартовая скорость

    • На первый раз принимается, но в будущем избегайте очевидных комментариев. Если указали, что t это скорость, то писать, что t=… это вычисление скорости уже не стоит. Аналогично «описание переменных» или «вводим входные данные».
    • Не стоит делать так
      Если вы комментируете каждую переменную, то делайте это в отдельной строке:
      Остальные стоит вводить ближе к месту использования и там же комментировать. Например:

Добавить комментарий