e-olymp 440. Подделка чека

Задача

Один из способов мошенничества, разработанных О. Бендером, заключался в следующем. Он вырезал полоску бумаги, содержащую несколько цифр из суммы чека (можно вырезать и крайние цифры), разрезал ее на две части, переставлял эти две части местами и аккуратно подклеивал обратно. Напишите программу, определяющую максимальное число, которое может быть получено в результате указанной манипуляции.

Входные данные

Во входном файле в первой строке содержится одно целое положительное число не более чем из $100$ цифр.

Выходные данные

В выходной файл вывести одно число – максимальное число, которое можно получить в результате указанной манипуляции, или исходное число, если увеличить число невозможно.

Тесты

Входные данные Выходные данные
$123321$ $332121$
$7888778888878888788878878777887$ $8888878888788878887778878777887$
$1091$ $9100$
$26364$ $64263$
$98765$ $98765$

Код программы

String

C-String

Решение задачи

Пусть заданы два числа: $a = \overline{a_1a_2 \ldots a_k},\ b = \overline{b_1b_2 \ldots b_k}$. Тогда $a > b \Leftrightarrow \exists i: \ \forall j < i \ a_j = b_j \ \wedge \ a_i = b_i$. Отсюда получаем необходимое условие получения максимального числа при перестановке в записи числа $a$ групп цифр $\overline{a_ia_{i+1} \ldots a_l}$ и $\overline{a_ja_{j+1} \ldots a_m} \ l<j$ местами: $i = \min_{1 < s < k} s: \ \exists t>s: \ a_t \gt a_s$. Если такое $i$ существует, то далее мы делаем перебор по всем возможным перестановкам, таким что первая группа чисел начинается с индекса $i$ и таким образом находим максимально возможное число. В противном случае данное число уже является максимальным.

Ссылки

Условие задачи на e-olymp
Решение на e-olymp. String
Решение на e-olymp. C-String
Код решения на Ideone. String
Код решения на Ideone. C-String

3 thoughts on “e-olymp 440. Подделка чека

Добавить комментарий