e-olymp 982. Связность

Задача. Проверить, является ли заданный неориентированный граф связным, то есть что из любой вершины можно по рёбрам этого графа попасть в любую другую.

Входные данные

В первой строке заданы количество вершин [latex]n[/latex] и ребер [latex]m[/latex] в графе соответственно [latex](1 \leq n \leq 100, 1 \leq m \leq 10000)[/latex]. Каждая из следующих m строк содержит по два числа [latex]u_i[/latex] и [latex]v_i[/latex] [latex](1 \leq u_i, v_i \leq n);[/latex]  каждая такая строка означает, что в графе существует ребро между вершинами [latex]u_i[/latex] и [latex]v_i[/latex].

Выходные данные

Выведите «YES», если граф является связным и «NO» в противном случае.

Тесты

Тесты, взятые с e-olymp.com

Test Input Output
1 3 2
1 2
3 2
YES
2 3 1
1 3
NO

Мои тесты

Test Input Output
1 4 2
1 2
3 4
NO
2 4 5
1 2
2 1
2 4
2 4
4 2
NO
3 5 4
1 2
5 1
3 5
4 3
YES

Код программы

Алгоритм

Чтобы установить, является ли граф связным, я использовала удобный для этого алгоритм поиска в ширину. Он заключается в следующем: начиная с какой-то вершины, мы поочередно просматриваем все вершины, соседние с ней. Каждую посещенную вершину мы помечаем маркером. Затем повторяем этот процесс для каждой из соседних вершин, и так далее. Поиск будет продолжаться, пока мы не обойдем все вершины, которые можно достигнуть из данной. Если после этого в графе осталась хотя бы одна не помеченная вершина, значит из нее нельзя попасть в помеченные, то есть граф не является связным. При этом неважно, с какой вершины мы будем начинать поиск, ведь нам нужно установить сам факт, связный граф или нет.

Код программы

Засчитанное решение на сайте e-olymp.com

One thought on “e-olymp 982. Связность

Добавить комментарий