e-olymp 1151. Кладоискатель

Задача

Юный кладоискатель Рома прошел курс обучения по специальности «кладовое дело», и теперь проходит летнюю практику. Летняя практика проходит близ поселка «Каменные Зори» и длится ровно $b$ дней. Каждый день Рома находит $a$ закопанных в окрестности монет. Таким образом, в конце первого дня у него было $a$ монет, в конце второго — $2a,$ а по окончании практики у Ромы должно накопиться $b\cdot a$ монет.

Если в конце дня ответственный преподаватель замечал, что число Роминых монет делится на $b,$ то Роме разрешалось взять с полки пирожок, который он тут же съедал. Помогите Роме посчитать, сколько пирожков он съест за время прохождения практики.

Входные данные

Первая строка входного файла содержит два целых числа $a$ и $b$ ($1 \le a, b \le 10^9$).

Выходные данные

В выходной файл выведите число съеденных Ромой пирожков.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 1 2 1
2 2 2 2
3 10 5 5
4 56000 35 35
5 300 1000000000 100

Код программы

Решение

Нам заданы $a$ и $b$.
Существует 3 случая их отношения между собой:

  1. $a$ кратно $b$. Тогда в последовательности $a, 2a, 3a,\ldots,b \cdot a$ кратным $b$ будет каждый элемент последовательности. То есть количество дней равно $b$. Или НОД от $a$ и $b$, поскольку $a$ кратно $b$.
  2. Существует такое $k, k \in (1; b), k \in N.$ При котором: $k \cdot a$ кратно $b.$ $\frac{ka}{b} = c, c \in N$. Тогда у $b$ и $a$ есть НОД. $(b, a) = p, p > 1, p \in N$. $a = \tilde a \cdot p$, $b = \tilde b \cdot p.$ Тогда в последовательности $a, 2a, 3a,\ldots, b \cdot a$, а кратным $b$ будет каждый $k$-ый элемент данной последовательности. $c = \frac{ka}{b} = \frac{k \cdot \tilde a \cdot p}{\tilde b \cdot p} = \frac{k\tilde a }{\tilde b },$ $k$ обязан равняться $\tilde b $так как $\tilde a $и $\tilde b$ взаимно простые исходя из определения НОД и $c \in N.$ Отсюда $\frac{b}{k} = \frac{\tilde b p}{\tilde b}=p$ — количество кратных элементов последовательности.
  3. Не существует такого $k, k \in (1; b), k \in N$. При котором: $k \cdot a$ кратно $b$. И $a$ не кратно $b.$ Тогда в последовательности $a, 2a, 3a,\dots,b\cdot a$ кратным $b$ будет только последний элемент последовательности. Так как числа взаимно простые, то НОД равен $1.$

Исходя из этих рассуждений решение задачи сводится к нахождению НОД для $a$ и $b.$ Используем рекурсивную реализацию алгоритма Евклида.

Ссылки

e-olymp 571. НОД

Задача

Найти НОД (наибольший общий делитель ) $n$ чисел.

Входные данные

Первая строка содержит количество чисел [latex]n \left(1 < n < 101\right)[/latex]. Во второй строке через пробел заданы [latex]n[/latex] натуральных чисел, каждое из которых не превышает [latex]30000[/latex].

Выходные данные

НОД заданных чисел.

Тесты

# Входные данные Выходные данные
1 3
5 7 2
1
2 2
45 10
5
3 4
27 90 15 9
3
4 2
40 64
8
5 3
8 8 8
8

Код

Решение задачи


Для решения данной задачи воспользуемся алгоритмом Евклида — алгоритмом нахождения наибольшего общего делителя (НОД) пары целых чисел, т.е. самого большого числа, на которое можно без остатка разделить оба числа, для которых ищется НОД.

  • Условие задачи на e-olymp
  • Код решения на ideone

e-olymp 1154. Кружок хорового пения.

Условие задачи:

В некотором учебном заведении функционирует кружок хорового пения. Начало кружка всегда происходит единообразно: по сигналу руководителя кружка все [latex]N[/latex]  участников становятся в круг и каждый [latex]M[/latex] -й для распевки поёт гамму.

Руководитель кружка заметил, что размять голосовые связки не всегда удаётся всем участникам кружка. По заданным [latex]N[/latex] и [latex]M[/latex] помогите ему определить, или в очередной раз в разминке примут участие все участники хора.

Входные данные

Входные данные состоят из нескольких тестовых случаев. Каждый тестовый случай расположен в отдельной строке и содержит два целых числа [latex]N[/latex] и [latex]M[/latex], где [latex]\left( 1 \le N, M \le {10}^{3} \right).[/latex]

Выходные данные

Для каждого тестового случая в отдельной строке выведите «YES», если в разминке примут участие все участники хора, в противном случае выведите «NO».

Тесты:

n m answer
4 1  YES
 6  3  NO

 

Решение:

Для начала нам надо найти наибольший общий делитель(НОД). Для этого хорошо подойдет алгоритм Евклида и если НОД равен единице  то  все ученики распоются и мы выводим «YES» в другом случае мы выводим «NO».

Код: