e-olymp 2814. Быстрое возведение в степень.

Задача

Очень часто возникает задача эффективного вычисления xn по данным $x$ и $n$, где $n$ — положительное целое число.

Предположим, например, что необходимо вычислить $x^{16}$. Можно просто начать с $x$ и 15 раз умножить его на $x$. Но тот же ответ можно получить всего за четыре умножения, если несколько раз возвести в квадрат получающийся результат, последовательно вычисляя $x^{2}$, $x^{4}$, $x^{8}$, $x^{16}$.

Эта же идея, в целом, применима к любому значению $n$ следующим образом. Запишем $n$ в виде числа в двоичной системе счисления (убирая нули слева). Затем заменим каждую «1» парой символов SX, а каждый «0» — символом S и вычеркнем крайнюю слева пару символов SX. Результат представляет собой правило вычисления $x^{n}$, в котором «S» трактуется как операция возведения в квадрат, а «X» — как операция умножения на $x$. Например, $n = 23$ имеет двоичное представление $10111$. Таким образом, мы формируем последовательность SXSSXSXSX, из которой удаляем начальную пару SX для получения окончательного правила SSXSXSX. Это правило гласит, что необходимо «возвести в квадрат, возвести в квадрат, умножить на $x$, возвести в квадрат, умножить на $x$, возвести в квадрат и умножить на $x$», т.е. последовательно вычислить значения $x^{2}$, $x^{4}$, $x^{5}$, $x^{10}$, $x^{11}$, $x^{22}$, $x^{23}$.

Вам нужно для заданного n сформулировать соответствующее правило быстрого возведения числа $x$ в степень $x^{n}$

Входные данные

Одно натуральное число $n$, не превышающее $2 \cdot 10^{9}$.

Выходные данные

Выведите строку для правила возведения числа $x$ в степень $n$ для получения $x^{n}$.

Тесты

# Входные данные Выходные данные
1 23 SSXSXSX
2 1
3 16 SSSS
4 1000000 SXSXSXSSXSSSSSXSSSXSSSSSS
5 2018 SXSXSXSXSXSSSSXS

Решение

Создаём две строки $s$ и $s1$ для двоичного представления числа $n$ и для правила нахождения числа $n$ соответственно. Далее мы проверяем $n$ на чётность, добавляя к строке $s$

  • $0$ при чётном $n$
  • $1$ при нечётном $n$

и делим $n$ на $2$. Продолжаем это пока $n \neq 0$. Таким образом мы получили двоичный код, записанный в обратном порядке от двоичного кода числа $n$. После мы присваиваем цифрам «0» и «1» соответственно «S» и «SX» справа налево (в порядке двоичного кода числа $n$). В конце, удаляем первые символы «SX» с помощью метода erase(), таким образом получая ответ

Условие задачи можно найти на e-olymp
Код решения — ideone

Ю3.20

Задача: Для заданных [latex]a[/latex] и [latex]p[/latex] вычислить [latex]x = \sqrt[p]{a}[/latex] по рекуррентному соотношению Ньютона: 

[latex]x_{n+1}=\frac{1}{p}*\left[(p-1)x_{n}+\frac{a}{x_{n}^{p-1}}\right][/latex]  [latex]x_{0} = a[/latex]

Сколько итераций надо выполнить, чтобы для достижения заданной погрешности [latex]\varepsilon[/latex] выполнялось соотношение:

[latex]\left|x_{n+1}-x_{n}\leq\varepsilon\right|[/latex]?

Тесты:

[latex]a[/latex] [latex]p[/latex] Значение корня [latex]x[/latex] Значение корня [latex]x[/latex], подсчитанного с помощью соотношения Количество итераций
57 5  2.24479 2.24479  18
16 2 4 4 5
230 2  15.1658  15.1658 7
9 3  2.08008 2.08008  7

Код на С++: 

Код на Java:

 

 

Решение: Для подсчёта значения корня с помощью рекуррентного соотношения, я создал цикл, в котором организовал подсчёт значения таким образом, что пока разница значения корня x, подсчитанного с помощью функции pow, cо значением текущего корня xn,  подсчитанным с помощью соотношения, больше заданной погрешности eps, то, записывая текущее значение в переменную x_prev, подсчитываю новое значение корня. В зависимости от заданной погрешности, программа считает результат и выводит его на экран вместе с кол-вом итераций.

UPD: По предложению Игоря Евгеньевича добавил быстрое возведение в целую степень.

Решение UPD: Чтобы построить алгоритм быстрого возведения в степень, необходимо рассмотреть две ситуации:

  1. Когда степень чётна;
  2. Когда степень не чётна;

Ситуация 1 : Проведя несложный анализ  можно заметить, что [latex]{a}^{p}[/latex] можно представить в виде

[latex](a^{\frac{p}{2}})^{2}[/latex].

Ситуация 2: В этой ситуации необходимо перейти в степень [latex]p-1[/latex], которая является чётной.

[latex]a^{p}=a^{p-1} * a[/latex]

И в результате получим алгоритм, который работает за [latex]O(\log n)[/latex].

 

Проверить правильность работы программы можно здесь (UPD):  http://ideone.com/VBLGKO