e-olymp 4721. Отличник Вася

Задача

Вася — отличник. Он радуется каждой пятёрке, которую увидит в числе. Каждое утро он едет на автобусе и считает количество пятёрок в билетике, который ему попался. По давней примете (действующей ещё со 2-го класса), он знает, что за день получит столько пятёрок, сколько их у него в билетике. По номеру сегодняшнего Васиного билетика определите, сколько пятёрок он получит в этот день.

Входные данные

Номер Васиного билетика [latex]n (0 \le n \le 9999)[/latex].

Выходные данные

Выведите количество пятёрок, которое получит Вася.

Тесты

Вход Выход
3533 1
5555 4
2521 1
5185 2
1682 0

 Код программы

Решение

Читаем номер билетика из потока ввода посимвольно, и в случае нахождения пятёрки — инкрементируем счётчик.

Ссылки

e-olymp

ideone

 

e-olymp 891. Покупка цветов

Задача. Покупка цветов

На День учителя Вася решил купить букет цветов. В магазине продаются ромашки по $a$ рублей за штуку и гладиолусы по $b$ рублей за штуку ($a < b$). У Васи есть $c$ рублей. Он хочет составить букет из максимально возможного количества цветов, и при этом потратить как можно больше денег. Другими словами, из всех букетов с максимально возможным количеством цветов он хочет выбрать самый дорогой, но не дороже $c$ рублей. Помогите ему вычислить стоимость такого букета.

Входные данные

Три целых числа $a$, $b$, $c$ ($1 ≤ a < b ≤ 100, 0 ≤ c ≤ 1000$).

Выходные данные

Выведите одно число — стоимость самого дорогого букета из максимального количества цветов.

Тесты

Ввод Вывод
1 5 7 0 0
2 3 5 10 9
3 2 3 11 11
4 48 64 306 304
5 17 20 100 100
6 13 15 260 260
7 29 53 999 986
8 17 28 16 0
7 75 100 1000 1000

Решение

Рассмотрим частный случай. Если можно купить по минимальной цене ромашки так, что у нас не будет остатка, то полученное количество цветов будет максимальным и увеличить их стоимость будет невозможно. Значит ответом будет количество денег в кошельке у Васи.

Далее, что бы найти решение для оставшихся вариантов, необходимо найти наибольшую сумму стоимостей максимального количества цветов не превышающую $c$ рублей. Максимальное количество цветов n будет равно количеству цветов с минимальной стоимостью которое можно купить за имеющиеся у Васи деньги. ($c / a$).

Что бы оптимизировать код будем проверять условия в цикле с обоих концов (меняя местами количество ромашек и гладиолусов), таким образом мы выполним его за в 2 раза меньшее количество проходов и быстрее найдём максимум. А так же при равенстве искомого значения с его максимально возможным остановим проверку.

Код

Условие задачи

Решение

Код на ideone

e-olymp-248. Юный садовод

Задача Юный садовод

Условие

Мама попросила Васю полить все молодые деревца в саду. Вася знает, что пока деревья маленькие, их надо очень хорошо поливать. А вот сколько поливать — неизвестно. Но Вася — очень умный мальчик. Он внимательно прочитал весь учебник ботаники для средней школы и выяснил, что полив прямо пропорционален количеству листьев на дереве. Для хорошего роста деревьев достаточно выливать под дерево ежедневно по одному литру воды на каждый лист.prb248

К счастью Васи оказалось, что листья на деревьях растут ярусами, причем на верхнем ярусе два листа, на втором — четыре, на следующем — шесть, и так далее, на каждом последующем ярусе на два листа больше по сравнению с предыдущим. А на самой верхушке растет еще один листик. Хитрый Вася послал младшую сестренку Машеньку подсчитать количество ярусов на каждом дереве, а Вас просит написать программу, которая для каждого дерева вычислит количество литров воды для его полива.

 

Входные данные

Количество ярусов [latex] n(0≤n≤1000)[/latex]  на дереве.

Выходные данные

Вывести количество литров воды для полива этого дерева.

Тесты

Входные данные Выходные данные
1. 10 111
2. 0 1
3. 5 31
4. 123 15253

Линейное вычисление

Решение

Что бы решить эту задачу, необходимо найти сумму арифметической прогрессии, где [latex]  a_1=2[/latex] и   [latex] d=2 [/latex] и добавить к ней единицу (лист с верхушки).  Для этого можно воспользоваться формулой суммы арифметической прогрессии $S_n=\frac{2a_1+d(n-1)}{2}n$

Ссылки

Ссылка на e-olymp

Ссылка на ideone

Александр Довгань

Прикладная математика Одесского национального университета имени И.И.Мечникова