e-olymp 8522. Делимость

Задача

Заданы два натуральных числа $a$ и $b$. Проверьте, делится ли $a$ на $b$.

Входные данные: Два натуральных числа $a$ и $b$ $(1 \le a, b \le 10^9)$

Выходные данные: Если $a$ не делится на $b$ нацело, вывести в одной строке частное и остаток от деления $a$ на $b$. Иначе вывести "Divisible".

Тесты

$a$ $b$ Вывод программы
15 3 Divisible
12 7 1 5
15 23 0 15
1000000000 889879 1123 665883

Continue reading

e-olymp 8372. Составить треугольник

Задача взята с сайта e-olymp

Задача

По заданным длинам трех отрезков определить, можно ли из них составить невырожденный треугольник. Треугольник называется невырожденным, если его площадь больше 0.

Входные данные

Три натуральных числа $a, b, c (1 ≤ a, b, c ≤ 1000)$ — длины трех отрезков.

Выходные данные

Вывести YES если из отрезков можно составить невырожденный треугольник и NO в противном случае.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 5 6 7 YES
2 3 7 4 NO
3 16 24 32 YES
4 54 1 100 NO
5 1 1 1 YES

Код программы (Ветвление)

Код программы (Линейные вычисления)

Решение задачи

Пусть $a, b, c$ – длины трех отрезков. Из них можно составить невырожденный треугольник, если длина каждых двух отрезков больше длины третьего (это условие известно как неравенство треугольника): | $b$ | < | $a$ | + | $c$ | \begin{cases} b + c > a\\a + c > b\\a + b > c\end{cases}

Ссылки

Условие задачи на e-olymp

Код программы на ideone (Линейные вычисления)

Код программы на ideone (Ветвление)

e-olymp 3867 Ленивый Мишка

Задача. Ленивый Мишка

Мишка договорился с ребятами поиграть в футбол и уже собрался выходить из дома, но тут его поймала мама и сказала, что пока Миша не поможет ей по дому, на футбол он не пойдет. На выбор мама предложила Мишке выполнить одно из трех дел: или помыть посуду, или пропылесосить квартиру, или поиграть с младшей сестрой Маринкой, пока мама сходит в магазин. Мишка прикинул, сколько времени займет каждое дело:

  • На мытье посуды уйдет [latex]t_1[/latex] секунд
  • Пропылесосить квартиру можно за [latex]t_2[/latex] секунд
  • Процесс игры с Маринкой займет [latex]t_3[/latex] секунд

Понятно, что Мишка выберет то дело, которое займет минимум времени. Ваша программа должна вывести время, в течение которого Мишка будет выполнять мамино задание.

Входные данные

Три целых числа [latex]t_1[/latex], [latex]t_2[/latex], [latex]t_3[/latex] ([latex]1 ≤ t_1, t_2, t_3 ≤ 1000[/latex]).

Выходные данные

Вывести минимальное время, которое потребуется Мишке для выполнения маминого задания.

Тесты

Ввод Вывод
1 1 7 2 1
2 100 45 1 1
3 66 9 888 9
4 5 800 4 4
5 25 46 25 25
6 13 10 12 10
7 999 995 1000 995

Решение 1

Мишка выбирает мамино поручение, что занимает наименьшее количество времени. Нам дано время за которое Мишка выполнит данные поручения. Найдём из них наименьшее и выведем на экран. Воспользуемся функцией int min (int, int); из библиотеки cmath.

Код 1

Решение 2

Для нахождения минимума трёх чисел заведём переменную min и воспользуемся логическим ветвлением.

Код 2

Ссылки

Первое решение

Второе решение

Условие задачи

Компиляция первого решения

Компиляция второго решения

e-olymp 76. Новый шкаф

ЗадачаНовый шкаф

Заданы размеры прямоугольной двери [latex]a[/latex], [latex]b[/latex] и размеры шкафа, который имеет форму прямоугольного параллелепипеда [latex]x[/latex], [latex]y[/latex], [latex]z[/latex]. Можно ли пронести шкаф сквозь дверь, если проносить его разрешается так, чтобы каждое ребро шкафа было параллельно или перпендикулярно стороне двери.

Входные данные

Пять действительных чисел [latex]a[/latex], [latex]b[/latex], [latex]x[/latex], [latex]y[/latex], [latex]z[/latex] ( [latex] 0\;\lt\;a,\;b,\;x,\;y,\;z\;\lt\;10[/latex] ).

Выходные данные

Вывести [latex]1[/latex], если шкаф можно свободно пронести сквозь дверь и [latex]0[/latex] в противоположном случае.

Тесты

Входные данные Выходные данные
[latex]5\;7\;4\;6\;8[/latex] [latex]1[/latex]
[latex]1\;4\;2\;3\;6[/latex] [latex]0[/latex]
[latex]2.9\;6.7\;5.1\;3.7\;1.0[/latex] [latex]1[/latex]
[latex]4\;6\;6\;4\;3[/latex] [latex]1[/latex]
[latex]1.5\;8\;9.9\;2\;7.5[/latex] [latex]0[/latex]
[latex]2\;2\;2\;2\;2[/latex] [latex]0[/latex]
[latex]2\;3\;7\;8\;8[/latex] [latex]0[/latex]
[latex]5\;6\;2\;4\;3.5[/latex] [latex]1[/latex]

Код программы

Решение

Шкаф можно пронести через дверь тогда и только тогда, когда ширина и высота его грани, параллельной дверному проему, меньше ширины и высоты двери.

Имеем шесть возможных вариантов ширины и высоты грани шкафа — [latex](x,y)[/latex], [latex](y,x)[/latex], [latex](y,z)[/latex], [latex](z,y)[/latex], [latex](x,z)[/latex], [latex](z,x)[/latex]

Сравнивая их с размерами двери определяем, можно ли пронести шкаф сквозь дверь.

Ссылки

Условия задачи на e-olymp
Код задачи на ideone

e-olymp 12. Поврежденная картина

Задача

Римская цифра [latex]I[/latex], стоявшая на полу комнаты в точке с координатами [latex]X_0[/latex], [latex]Y_0[/latex], [latex]0[/latex] не выдержала отношения к решению задачи «Римские цифры» и упала на пол. Поскольку нижний конец был прикреплен шарнирно, то он остался на месте, а верхний оказался в точке с координатами [latex]X_1[/latex], [latex]Y_1[/latex], [latex]0[/latex]. В комнате стояла строго вертикально бумажная картина. Зная координаты концов нижнего основания [latex]X_2[/latex], [latex]Y_2[/latex], [latex]0[/latex] и [latex]X_3[/latex], [latex]Y_3[/latex], [latex]0[/latex] и высоту картины [latex]H[/latex] найти длину «разрыва бумаги» на картине.

Входные данные

Во входной строке записано 9 чисел [latex]X_0, Y_0, X_1, Y_1, X_2, Y_2, X_3, Y_3, H[/latex]. Все входные данные — целые числа, модуль которых не превышает [latex]10^9[/latex].

Выходные данные

Программа выводит единственное число – искомую величину с точностью до [latex]0.001[/latex].

Тесты

Входные данные Выходные данные
1 1 6 1 4 0 4 5 6 4.000
0 0 6 0 2 0 5 0 5 2.397
2 0 5 0 0 0 6 0 5 4.172
0 0 5 0 2 0 6 0 1 2.058
0 0 10 0 2 0 6 0 1 0.000

Решение задачи

Эта задача интересна тем, что для ее решения необходимо смоделировать большое количество разнообразных взаиморасположений картины и буквы. Далее  будут использоваться следующие обозначения: [latex]X_0[/latex]- основание буквы, [latex]X_1[/latex] — ее вершины, [latex]X_2[/latex] и [latex]X_3[/latex] — координаты основания картины, [latex]H[/latex] — высота картины.

1. [latex]X_0 X_1[/latex] и [latex]X_2 X_3[/latex] лежат на одной прямой

1.1. [latex]X_0[/latex] принадлежит [latex]X_2[/latex][latex]X_3[/latex]

1.1.1. [latex]X_1[/latex]принадлежит [latex]X_2[/latex][latex]X_3[/latex]

1.1.1.1 [latex]X_0[/latex][latex]X_1[/latex] не превышает [latex]H[/latex]

В таком случае искомая величина — дуга [latex]O X1[/latex], равная [latex]\frac{1}{4} [/latex] длины окружности с радиусом, равным высоте буквы: [latex]O[/latex][latex]X_1[/latex] = [latex]\frac{П\times X_0 X_1}{2} [/latex]

1.1.1.2 [latex]X_0[/latex][latex]X_1[/latex] больше, чем [latex]H[/latex]

в таком случае нам необходимо найти дугу [latex]NX_1[/latex],для этого умножив радиус на величину центрального угла: [latex]NX_1[/latex] =[latex]X_0 X_1 \times \arcsin \frac {H}{X_0 X_1}[/latex]

1.1.2 [latex]X_1[/latex] не принадлежит [latex]X_2 X_3[/latex]

1.1.2.1.[latex]X_2[/latex]  принадлежит [latex]X_0 X_1[/latex]

1.1.2.1.1. [latex]X_0 X_1[/latex] не превышает [latex]H[/latex]

В таком случае нам нужно найти дугу [latex]OM[/latex] по схожему с случаем 1.1.1.2 алгоритму: [latex]OM[/latex] = [latex]X_0 X_1 \times \arcsin \frac{X_0 X_3} {X_0 X_1} [/latex]

1.1.2.1.2. [latex]X_0[/latex][latex]X_1[/latex] больше [latex]H[/latex]

1.1.2.1.2.1. [latex]X_0 X_1 < \sqrt{X_0 X_2^2 + H^2} [/latex]

В таком случае искомая величина равна дуге [latex]MN[/latex]= [latex]X_0 X_1 \times  (\arcsin \frac{H}{X_0 X_1} — \arccos \frac{X_0 X_3}  {X_0 X_1}))

1.1.2.2. данный случай аналогичен предыдущему.Единственное различие заключается в том,что точки [latex]X_2[/latex] и [latex]X_3[/latex] меняются местами в формулах.

1.2 [latex]Х_0[/latex]  не принадлежит [latex]X_2[/latex][latex]X_3[/latex]

1.2.1 [latex]X_1[/latex]принадлежит [latex]X_2[/latex][latex]X_3[/latex]

введем новую переменную [latex]A[/latex], равную расстоянию от [latex]X_0[/latex] до картины.

1.2.1.1 [latex]X_0 X_1[/latex] меньше, чем [latex]\sqrt{A^2 + H^2}[/latex]

В данном случае нам нужно найти дугу [latex]M X_1[/latex] = [latex]X_0 X_1 \times \arccos \frac{A}{X_0 X_1}[/latex]

 

1.2.1.2 [latex]X_0[/latex][latex]X_1[/latex] не меньше, чем [latex]\sqrt{A^2 + H^2}[/latex]

в этом случае нам нужно найти дугу [latex]МХ_1[/latex]= [latex]X_0 X_1 \times \arcsin \frac{A}{X_0 X_1}[/latex]

1.2.2. обе вершины цифры не принадлежат картине

Обозначим через [latex]A[/latex] расстояние от [latex]X_0[/latex] до дальней вершины картины.

1.2.2.1. [latex]X_0 X_1 < \sqrt{A^2 + H^2} [/latex]

Искомая величина — дуга [latex]MN[/latex] = [latex]X_0 X_1\times  (\arcsin \frac{H}{X_0 X_1} —  \arccos \frac{A}{X_0 X_1})[/latex]

2. [latex]X_0 X_1[/latex] и [latex]X_2 X_3[/latex] не лежат на одной прямой

2.1. [latex]X_0 X_1[/latex] пересекает [latex]X_2 X_3[/latex]

В этом случае длина разрыва будет равна длине отрезка [latex]MN[/latex] либо высоте картины, если она окажется меньше вышеупомянутого отрезка.

 

Для того, чтобы не рассматривать случаи, в которых искомая величина равна нулю (все оставшиеся), при создании переменной, в которой будем хранить ответ, сразу приравняем ее к нулю.

Ссылки

Условие задачи на сайте e-olymp
Код решения

e-olimp 1610. Зайцы в клетках

Зайцы в клетках

Всем известен, так называемый, принцип Дирихле, который формулируется следующим образом:

Предположим, что некоторое число кроликов рассажены в клетках. Если число кроликов больше, чем число клеток, то хотя бы в одной из клеток будет больше одного кролика.

В данной задаче мы рассмотрим более общий случай этого классического математического факта. Пусть имеется [latex]n[/latex] клеток и [latex]m[/latex] зайцев, которых рассадили по этим клеткам. Вам требуется расcчитать максимальное количество зайцев, которое гарантированно окажется в одной клетке.

Входные данные

В одной строке заданы два натуральных числа [latex]n[/latex] и [latex]m[/latex] [latex](1 ≤ n, m ≤ 10^9)[/latex].

Выходные данные

Максимальное количество зайцев, которое гарантированно окажется в одной клетке.

Тесты

Входные данные Выходные данные
3 50 17
5 5 1
1070 589 1
34 49 2

Код программы

Решение задачи

Пусть [latex]n[/latex] — количество клеток, и [latex]m[/latex] — количество зайцев.
Найдем отношение [latex]\frac{m}{n}[/latex]. Если это отношение больше либо равно единице то [latex]{m}\geq{n}[/latex] и мы имеем ответ. [latex]\frac{(m+n-1)}{n}[/latex] — это формула выводит ответ в целом виде, если он целый, и округляет в большую сторону, если он дробный. Иначе [latex]{m}\leq{n}[/latex] и максимальное гарантированное количество зайцев в одной клетке равно единице. Это следует из условия задачи.

Условие задачи на e-olimp
Код решения ideon