e-olymp 458. Черно-белая графика

Задача

Одна из базовых задач компьютерной графики – обработка черно-белых изображений. Изображения можно представить в виде прямоугольников шириной $w$ и высотой $h,$ разбитых на $w × h$ единичных квадратов, каждый из которых имеет либо белый, либо черный цвет. Такие единичные квадраты называются пикселами. В памяти компьютера сами изображения хранятся в виде прямоугольных таблиц, содержащих нули и единицы.

Во многих областях очень часто возникает задача комбинации изображений. Одним из простейших методов комбинации, который используется при работе с черно-белыми изображениями, является попиксельное применение некоторой логической операции. Это означает, что значение пиксела результата получается применением этой логической операции к соответствующим пикселам аргументов. Логическая операция от двух аргументов обычно задается таблицей истинности, которая содержит значения операции для всех возможных комбинаций аргументов. Например, для операции «ИЛИ» эта таблица выглядит так.

Напишите программу, которая вычислит результат попиксельного применения заданной логической операции к двум черно-белым изображениям одинакового размера.

Входные данные

Первая строка содержит два целых числа $w$ и $h$ $(1 \leq w, h \leq 100).$ Последующие $h$ строк описывают первое изображение и каждая из этих строк содержит $w$ символов, каждый из которых равен нулю или единице. Далее следует описание второго изображения в аналогичном формате. Последняя строка содержит описание логической операции в виде четырех чисел, каждое из которых – ноль или единица. Первое из них есть результат применения логической операции в случае, если оба аргумента нули, второе – результат в случае, если первый аргумент ноль, второй единица, третье – результат в случае если первый аргумент единица, второй ноль, а четвертый – в случае, если оба аргумента единицы.

Выходные данные

Вывести результат применения заданной логической операции к изображениям в том же формате, в котором изображения заданы во входных данных.

Тесты

Входные данные Выходные данные
 1 5 3
01000
11110
01000
10110
00010
10110
0110
11110
11100
11110
2 2 3
010
111
000
101
1010
11
10
10
3 4 4
1111
0101
0000
1110
0011
0101
0111
1111
0011
1111
0101
0000
1110
4 3 6
100011
000111
000000
111011
001100
010101
1000
000
100
110
000
101
010

Код программы 1

( использован одномерный массив)

Код программы 2

(использован двумерный массив)

Решение

Объявляем два булевых динамических массива под две пиксельные таблицы и один статический для таблицы истинности, вводим входные данные. Затем поочерёдно сравниваем соответствующие элементы массивов с помощью функции my_operation, которая принимает две переменные a и b булевского типа и булев массив res с таблицей истинности, и возвращает соответствующее значение из таблицы для комбинации значений a и b. Результат сравнения выводим.

Ссылки

e-olymp 8654. Целочисленное умножение

Задача взята с сайта e-olymp

Задача

Даны три целых числа $a, b, c.$ Вычислить значение выражения $a \cdot b \text{ mod } c.$

Входные данные

Три целых положительных числа $a, b, c \left( a, b, c < 2^{63} \right).$

Выходные данные

Вывести значение выражения $ a \cdot b \text{ mod } c.$

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 2 3 2 0
2 11 3 2 1
3 123456789
987654321
17
0
4 5000400000023
23000400400500
100000000070707
68238553233174
5 10000018585
10000000000005
101020304050607080
85850050000993845

Решение

Для решения задачи напишем рекурсивную функцию умножения, основанную на том, что [latex]\displaystyle a\cdot b =\displaystyle[/latex][latex] \begin{cases}\left(a+a\right)\cdot\frac{b}{2} &\text{} b\equiv_{2} 0 \\a+a\cdot\left(b-1\right) &  \text{} b \not \equiv_{2} 0\ \end{cases}.[/latex] Поскольку максимальное значение из условия задачи в два раза меньше максимального числа из 64-битных беззнаковых чисел и[latex]\left(a\cdot b\right)\text{ mod } c =\left(a\text{ mod } с \cdot b\text { mod }c\right)\text{ mod }c,[/latex] мы можем на каждом шагу применять к $a$ и $b$  операцию остатка от деления на $c$ , за счет чего произведение никогда не будет превосходить $2^{64}-1$.

  • Засчитанное решение на e-olymp
  • Код на ideone

e-olymp 774. Торт

Задача

После окончания второго тура олимпиады по программированию участники олимпиады решили отметить это событие. Для этой цели был заказан один большой торт прямоугольной формы. При этом стол, вокруг которого собрались участники был круглым. Естественно, у них возник вопрос, поместиться ли прямоугольный торт на круглом столе так, чтобы ни одна часть торта не выходила за пределы стола. Вам необходимо дать ответ на этот вопрос, зная размеры торта и радиус стола.

Входные данные

Содержит три натуральных числа: радиус стола [latex]r \left(1\leqslant r\leqslant 1000 \right)[/latex], ширину [latex]w[/latex] и длину [latex]l[/latex] торта [latex] \left(1\leqslant w \leqslant l \leqslant 1000\right)[/latex].

Выходные данные

Вывести слово [latex]YES[/latex], если торт помещается на стол, и слово [latex]NO[/latex] в противном случае.

Тесты

Входные данные Выходные данные
1 38 40 60 YES
2 35 20 70 NO
3 50 60 80 YES
4 30 60 90 NO

Код программы

с ветвлением:

без ветвления:

 

Решение задачи

Вписанный в окружность прямоугольник

Вписанный в окружность прямоугольник

Для того, чтобы узнать, помещается торт на столе или нет, необходимо найти диагональ прямоугольного торта. Зная длину и ширину прямоугольника, находим диагональ по теореме Пифагора. Если она равна или меньше диаметра стола $AB^2$ + $AD^2$ <= 4$OD^2$, значит торт помещается, и пишем  "YES". Если диагональ больше диаметра стола, пишем  "NO".

Ссылки

  • Условие задачи на e-olymp
  • Код программы с ветвлением на ideone
  • Код программы без ветвления на ideone

e-olymp 273. Возведение в степень

Задача

По трем натуральным числам [latex]a[/latex], [latex]b[/latex] и [latex]m[/latex] вычислить значение [latex]a^b\mod m[/latex].

Входные данные

Три натуральных числа [latex]a[/latex], [latex]b[/latex], [latex]m[/latex] [latex]\left(1 \leqslant a, m \leqslant 10^9, 2 \leqslant b \leqslant 10^7\right)[/latex].

Выходные данные

Вывести [latex]a^b\mod m[/latex].

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 1 2 100 1
2 100 2 1000000 10000
3 2 3 50 8
4 9 2 1 0
5 9 2 25 6

Код с циклом

Код с ветвлением

Решение

Для решения этой задачи я воспользовался функцией бинарного возведения в степень binpow () (рекурсивной для программы с ветвлением и нерекурсивной для программы с циклом). Это приём, позволяющий возводить любое число в [latex]n[/latex]-ую степень за [latex]O(\log n)[/latex] умножений. В этой функции при возведении я дополнительно применял операцию деление с остатком к результату res и возводимому числу a для того, чтобы получить решение.

Запустить код с циклом (ideone) можно здесь
Запустить код с ветвлением (ideone) можно здесь
Задача на E-olymp

e-olymp 8534. Хлопці на ім’я Валя

Задача

У літньому таборі $n$ дітей. Серед будь-яких $L$ дітей є хоча б одна дівчинка. Серед будь-яких $v$ дітей є дитина на ім’я Валя (це ім’я можуть мати і хлопчик, і дівчинка). Напишіть програму, що визначає умову наявності в таборі хоча б одного Валентина.

Вхідні дані

$100≤n≤200$, $40≤L≤140$, $20≤v≤70$. Вхідні дані ввести зі стандартного пристрою введення в один рядок, розділяючи значення пропусками.

Вихідні дані

На стандартний пристрій виведення вивести $1$, якщо відповідь на питання умови стверджувальне. Інакше вивести $0$.

Тесты

Входные данные Выходные данные
110 80 27 1
100 70 30 1
70 50 30 0
85 35 20 1
90 50 50

0

Код програми

Решение

Так як серед $v$ дітей точно знайдеться Валя, то нам необхідно, щоб $n — v + 1$ було додатним. Іншими словами, дітей було більше, ніж достатня для Валь їх кількість. Але так як Валею може бути ще й дівчинка, необхідно, щоб ця різниця була більшою, ніж $l$. Таким чином, завжди знайдеться Валя з інших $v$ дітей, хоча б один з яких не увійшов в $l$. Звідси і формула: $n>v+ l-1$ або  $n> = l + v$.

e-olymp

ideone

 

 

e-olymp 8522. Делимость

Задача

Заданы два натуральных числа $a$ и $b$. Проверьте, делится ли $a$ на $b$.

Входные данные: Два натуральных числа $a$ и $b$ $(1 \le a, b \le 10^9)$

Выходные данные: Если $a$ не делится на $b$ нацело, вывести в одной строке частное и остаток от деления $a$ на $b$. Иначе вывести "Divisible".

Тесты

$a$ $b$ Вывод программы
15 3 Divisible
12 7 1 5
15 23 0 15
1000000000 889879 1123 665883

Continue reading

e-olymp 8372. Составить треугольник

Задача взята с сайта e-olymp

Задача

По заданным длинам трех отрезков определить, можно ли из них составить невырожденный треугольник. Треугольник называется невырожденным, если его площадь больше 0.

Входные данные

Три натуральных числа $a, b, c (1 ≤ a, b, c ≤ 1000)$ — длины трех отрезков.

Выходные данные

Вывести YES если из отрезков можно составить невырожденный треугольник и NO в противном случае.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 5 6 7 YES
2 3 7 4 NO
3 16 24 32 YES
4 54 1 100 NO
5 1 1 1 YES

Код программы (Ветвление)

Код программы (Линейные вычисления)

Решение задачи

Пусть $a, b, c$ – длины трех отрезков. Из них можно составить невырожденный треугольник, если длина каждых двух отрезков больше длины третьего (это условие известно как неравенство треугольника): | $b$ | < | $a$ | + | $c$ | \begin{cases} b + c > a\\a + c > b\\a + b > c\end{cases}

Ссылки

Условие задачи на e-olymp

Код программы на ideone (Линейные вычисления)

Код программы на ideone (Ветвление)

e-olymp 3867. Ленивый Мишка

Задача. Ленивый Мишка

Мишка договорился с ребятами поиграть в футбол и уже собрался выходить из дома, но тут его поймала мама и сказала, что пока Миша не поможет ей по дому, на футбол он не пойдет. На выбор мама предложила Мишке выполнить одно из трех дел: или помыть посуду, или пропылесосить квартиру, или поиграть с младшей сестрой Маринкой, пока мама сходит в магазин. Мишка прикинул, сколько времени займет каждое дело:

  • На мытье посуды уйдет [latex]t_1[/latex] секунд
  • Пропылесосить квартиру можно за [latex]t_2[/latex] секунд
  • Процесс игры с Маринкой займет [latex]t_3[/latex] секунд

Понятно, что Мишка выберет то дело, которое займет минимум времени. Ваша программа должна вывести время, в течение которого Мишка будет выполнять мамино задание.

Входные данные

Три целых числа [latex]t_1[/latex], [latex]t_2[/latex], [latex]t_3[/latex] ([latex]1 ≤ t_1, t_2, t_3 ≤ 1000[/latex]).

Выходные данные

Вывести минимальное время, которое потребуется Мишке для выполнения маминого задания.

Тесты

Ввод Вывод
1 1 7 2 1
2 100 45 1 1
3 66 9 888 9
4 5 800 4 4
5 25 46 25 25
6 13 10 12 10
7 999 995 1000 995

Решение 1

Мишка выбирает мамино поручение, что занимает наименьшее количество времени. Нам дано время за которое Мишка выполнит данные поручения. Найдём из них наименьшее и выведем на экран. Воспользуемся функцией int min (int, int); из библиотеки cmath.

Код 1

Решение 2

Для нахождения минимума трёх чисел заведём переменную min и воспользуемся логическим ветвлением.

Код 2

Ссылки

Первое решение

Второе решение

Условие задачи

Компиляция первого решения

Компиляция второго решения

e-olymp 76. Новый шкаф

ЗадачаНовый шкаф

Заданы размеры прямоугольной двери [latex]a[/latex], [latex]b[/latex] и размеры шкафа, который имеет форму прямоугольного параллелепипеда [latex]x[/latex], [latex]y[/latex], [latex]z[/latex]. Можно ли пронести шкаф сквозь дверь, если проносить его разрешается так, чтобы каждое ребро шкафа было параллельно или перпендикулярно стороне двери.

Входные данные

Пять действительных чисел [latex]a[/latex], [latex]b[/latex], [latex]x[/latex], [latex]y[/latex], [latex]z[/latex] ( [latex] 0\;\lt\;a,\;b,\;x,\;y,\;z\;\lt\;10[/latex] ).

Выходные данные

Вывести [latex]1[/latex], если шкаф можно свободно пронести сквозь дверь и [latex]0[/latex] в противоположном случае.

Тесты

Входные данные Выходные данные
[latex]5\;7\;4\;6\;8[/latex] [latex]1[/latex]
[latex]1\;4\;2\;3\;6[/latex] [latex]0[/latex]
[latex]2.9\;6.7\;5.1\;3.7\;1.0[/latex] [latex]1[/latex]
[latex]4\;6\;6\;4\;3[/latex] [latex]1[/latex]
[latex]1.5\;8\;9.9\;2\;7.5[/latex] [latex]0[/latex]
[latex]2\;2\;2\;2\;2[/latex] [latex]0[/latex]
[latex]2\;3\;7\;8\;8[/latex] [latex]0[/latex]
[latex]5\;6\;2\;4\;3.5[/latex] [latex]1[/latex]

Код программы

Решение

Шкаф можно пронести через дверь тогда и только тогда, когда ширина и высота его грани, параллельной дверному проему, меньше ширины и высоты двери.

Имеем шесть возможных вариантов ширины и высоты грани шкафа — [latex](x,y)[/latex], [latex](y,x)[/latex], [latex](y,z)[/latex], [latex](z,y)[/latex], [latex](x,z)[/latex], [latex](z,x)[/latex]

Сравнивая их с размерами двери определяем, можно ли пронести шкаф сквозь дверь.

Ссылки

Условия задачи на e-olymp
Код задачи на ideone

e-olymp 12. Поврежденная картина

Задача

Римская цифра [latex]I[/latex], стоявшая на полу комнаты в точке с координатами [latex]X_0[/latex], [latex]Y_0[/latex], [latex]0[/latex] не выдержала отношения к решению задачи «Римские цифры» и упала на пол. Поскольку нижний конец был прикреплен шарнирно, то он остался на месте, а верхний оказался в точке с координатами [latex]X_1[/latex], [latex]Y_1[/latex], [latex]0[/latex]. В комнате стояла строго вертикально бумажная картина. Зная координаты концов нижнего основания [latex]X_2[/latex], [latex]Y_2[/latex], [latex]0[/latex] и [latex]X_3[/latex], [latex]Y_3[/latex], [latex]0[/latex] и высоту картины [latex]H[/latex] найти длину «разрыва бумаги» на картине.

Входные данные

Во входной строке записано 9 чисел [latex]X_0, Y_0, X_1, Y_1, X_2, Y_2, X_3, Y_3, H[/latex]. Все входные данные — целые числа, модуль которых не превышает [latex]10^9[/latex].

Выходные данные

Программа выводит единственное число – искомую величину с точностью до [latex]0.001[/latex].

Тесты

Входные данные Выходные данные
1 1 6 1 4 0 4 5 6 4.000
0 0 6 0 2 0 5 0 5 2.397
2 0 5 0 0 0 6 0 5 4.172
0 0 5 0 2 0 6 0 1 2.058
0 0 10 0 2 0 6 0 1 0.000

Решение задачи

Эта задача интересна тем, что для ее решения необходимо смоделировать большое количество разнообразных взаиморасположений картины и буквы. Далее  будут использоваться следующие обозначения: [latex]X_0[/latex]- основание буквы, [latex]X_1[/latex] — ее вершины, [latex]X_2[/latex] и [latex]X_3[/latex] — координаты основания картины, [latex]H[/latex] — высота картины.

1. [latex]X_0 X_1[/latex] и [latex]X_2 X_3[/latex] лежат на одной прямой

1.1. [latex]X_0[/latex] принадлежит [latex]X_2[/latex][latex]X_3[/latex]

1.1.1. [latex]X_1[/latex]принадлежит [latex]X_2[/latex][latex]X_3[/latex]

1.1.1.1 [latex]X_0[/latex][latex]X_1[/latex] не превышает [latex]H[/latex]

В таком случае искомая величина — дуга [latex]O X1[/latex], равная [latex]\frac{1}{4} [/latex] длины окружности с радиусом, равным высоте буквы: [latex]O[/latex][latex]X_1[/latex] = [latex]\frac{П\times X_0 X_1}{2} [/latex]

1.1.1.2 [latex]X_0[/latex][latex]X_1[/latex] больше, чем [latex]H[/latex]

в таком случае нам необходимо найти дугу [latex]NX_1[/latex],для этого умножив радиус на величину центрального угла: [latex]NX_1[/latex] =[latex]X_0 X_1 \times \arcsin \frac {H}{X_0 X_1}[/latex]

1.1.2 [latex]X_1[/latex] не принадлежит [latex]X_2 X_3[/latex]

1.1.2.1.[latex]X_2[/latex]  принадлежит [latex]X_0 X_1[/latex]

1.1.2.1.1. [latex]X_0 X_1[/latex] не превышает [latex]H[/latex]

В таком случае нам нужно найти дугу [latex]OM[/latex] по схожему с случаем 1.1.1.2 алгоритму: [latex]OM[/latex] = [latex]X_0 X_1 \times \arcsin \frac{X_0 X_3} {X_0 X_1} [/latex]

1.1.2.1.2. [latex]X_0[/latex][latex]X_1[/latex] больше [latex]H[/latex]

1.1.2.1.2.1. [latex]X_0 X_1 < \sqrt{X_0 X_2^2 + H^2} [/latex]

В таком случае искомая величина равна дуге [latex]MN[/latex]= [latex]X_0 X_1 \times  (\arcsin \frac{H}{X_0 X_1} — \arccos \frac{X_0 X_3}  {X_0 X_1}))

1.1.2.2. данный случай аналогичен предыдущему.Единственное различие заключается в том,что точки [latex]X_2[/latex] и [latex]X_3[/latex] меняются местами в формулах.

1.2 [latex]Х_0[/latex]  не принадлежит [latex]X_2[/latex][latex]X_3[/latex]

1.2.1 [latex]X_1[/latex]принадлежит [latex]X_2[/latex][latex]X_3[/latex]

введем новую переменную [latex]A[/latex], равную расстоянию от [latex]X_0[/latex] до картины.

1.2.1.1 [latex]X_0 X_1[/latex] меньше, чем [latex]\sqrt{A^2 + H^2}[/latex]

В данном случае нам нужно найти дугу [latex]M X_1[/latex] = [latex]X_0 X_1 \times \arccos \frac{A}{X_0 X_1}[/latex]

 

1.2.1.2 [latex]X_0[/latex][latex]X_1[/latex] не меньше, чем [latex]\sqrt{A^2 + H^2}[/latex]

в этом случае нам нужно найти дугу [latex]МХ_1[/latex]= [latex]X_0 X_1 \times \arcsin \frac{A}{X_0 X_1}[/latex]

1.2.2. обе вершины цифры не принадлежат картине

Обозначим через [latex]A[/latex] расстояние от [latex]X_0[/latex] до дальней вершины картины.

1.2.2.1. [latex]X_0 X_1 < \sqrt{A^2 + H^2} [/latex]

Искомая величина — дуга [latex]MN[/latex] = [latex]X_0 X_1\times  (\arcsin \frac{H}{X_0 X_1} —  \arccos \frac{A}{X_0 X_1})[/latex]

2. [latex]X_0 X_1[/latex] и [latex]X_2 X_3[/latex] не лежат на одной прямой

2.1. [latex]X_0 X_1[/latex] пересекает [latex]X_2 X_3[/latex]

В этом случае длина разрыва будет равна длине отрезка [latex]MN[/latex] либо высоте картины, если она окажется меньше вышеупомянутого отрезка.

 

Для того, чтобы не рассматривать случаи, в которых искомая величина равна нулю (все оставшиеся), при создании переменной, в которой будем хранить ответ, сразу приравняем ее к нулю.

Ссылки

Условие задачи на сайте e-olymp
Код решения

e-olimp 1610. Зайцы в клетках

Зайцы в клетках

Всем известен, так называемый, принцип Дирихле, который формулируется следующим образом:

Предположим, что некоторое число кроликов рассажены в клетках. Если число кроликов больше, чем число клеток, то хотя бы в одной из клеток будет больше одного кролика.

В данной задаче мы рассмотрим более общий случай этого классического математического факта. Пусть имеется [latex]n[/latex] клеток и [latex]m[/latex] зайцев, которых рассадили по этим клеткам. Вам требуется расcчитать максимальное количество зайцев, которое гарантированно окажется в одной клетке.

Входные данные

В одной строке заданы два натуральных числа [latex]n[/latex] и [latex]m[/latex] [latex](1 ≤ n, m ≤ 10^9)[/latex].

Выходные данные

Максимальное количество зайцев, которое гарантированно окажется в одной клетке.

Тесты

Входные данные Выходные данные
3 50 17
5 5 1
1070 589 1
34 49 2

Код программы

Решение задачи

Пусть [latex]n[/latex] — количество клеток, и [latex]m[/latex] — количество зайцев.
Найдем отношение [latex]\frac{m}{n}[/latex]. Если это отношение больше либо равно единице то [latex]{m}\geq{n}[/latex] и мы имеем ответ. [latex]\frac{(m+n-1)}{n}[/latex] — это формула выводит ответ в целом виде, если он целый, и округляет в большую сторону, если он дробный. Иначе [latex]{m}\leq{n}[/latex] и максимальное гарантированное количество зайцев в одной клетке равно единице. Это следует из условия задачи.

Условие задачи на e-olimp
Код решения ideon

e-olymp 143. Точка и треугольник

Точка и треугольник

Принадлежит ли точка [latex]O[/latex] треугольнику [latex]ABC[/latex]?

Входные данные

Содержит координаты точек [latex]O, A, B, C[/latex]. Числовые значения не превышают по модулю 100.

Выходные данные

Вывести 1, если точка [latex]O[/latex] принадлежит треугольнику [latex]ABC[/latex] и 0 в противоположном случае.

Входные данные Выходные данные
1 2 6 -9 3 8 1 5 11 1
2 -13 10 -12 5 99 80 17 13 0
3 98 -50 -87 7 5 3 23 17 0
4 5 15 7 12 5 3 2 54 1
5 2 2 3 1 1 3 9 11 1

Код программы

Решение

Для того, чтобы точка [latex]M[/latex] принадлежала треугольнику, заданному точками [latex]D([/latex]$x_{1}$,$y_{1}$[latex]), [/latex] [latex]E([/latex]$x_{2}$,$y_{2}$[latex]), [/latex][latex]F([/latex]$x_{3}$,$y_{3}$[latex]), [/latex] необходимо, чтобы псевдоскалярное (косое) произведение соответствующих векторов было больше либо равно нулю или же меньше либо равно нуля. Пользуясь формулой для косого произведения, запишем произведения векторов.
[$\overline{DE}$,$\overline{MD}$]=($x_{1}$-$x_{0}$) $\cdot$ ($y_{2}$-$y_{1}$)-($x_{2}$-$x_{1}$) $\cdot$ ($y_{1}$-$y_{0}$)
[$\overline{EF}$,$\overline{ME}$]=($x_{2}$-$x_{0}$) $\cdot$ ($y_{3}$-$y_{2}$)-($x_{3}$-$x_{2}$) $\cdot$ ($y_{2}$-$y_{0}$)
[$\overline{FD}$,$\overline{MF}$]=($x_{3}$-$x_{0}$) $\cdot$ ($y_{1}$-$y_{3}$)-($x_{1}$-$x_{3}$) $\cdot$ ($y_{3}$-$y_{0}$)
Если [$\overline{DE}$,$\overline{MD}$], [$\overline{EF}$,$\overline{ME}$] и [$\overline{FD}$,$\overline{MF}$] больше либо равно нулю или же меньше либо равно нуля, то точка принадлежит треугольнику.

 

Ссылки

Ссылка на Ideone
Ссылка на e-olymp

e-olymp 72. Дорога домой

Задача

Бедный Иа

Бедный Иа

Возвращаясь домой, после захватывающей игры в гостях у Винни Пуха, ослик Иа решил немного прогуляться. Поскольку во время прогулки он все время думал о своем приближавшемся дне рождения, то не заметил, как заблудился. Известно, что ослик во время прогулки всегда передвигается по определенному алгоритму: в начале прогулки он всегда начинает движение на северо-восток, делает при этом один шаг (перемещаясь при этом в точку [latex]left langle 1,1 right rangle[/latex]), потом меняет направление и двигается на юго-восток, далее на юго-запад, на северо-запад и так далее. При каждом изменении направления ослик всегда делает на [latex]n[/latex] шагов больше, чем было сделано до изменения направления.

Когда ослик все же решил возвратится домой, то обнаружил, что зашел глубоко в лес. Надвигалась ночь и Иа захотел поскорее попасть домой. Помогите узнать, удастся ли сегодня ослику попасть домой до заката солнца, если известно, что солнце зайдет через [latex]t[/latex] часов, а скорость передвижения ослика [latex]v[/latex] шагов в час (длина шага у ослика постоянна). Известно, что движение ослик начинал из точки с координатами [latex]left langle 0,0 right rangle[/latex], а его дом расположен в точке [latex]left langle x_{h},y_{h} right rangle[/latex], и направление движения он менял [latex]k[/latex] раз.

Входные данные

В первой строке задано четыре целых числа [latex]n[/latex], [latex]k[/latex], [latex]t[/latex], [latex]v[/latex] [latex](0leq n,k,t,vleq 100)[/latex]
. Во второй строке размещено два целых числа [latex]x_{h}[/latex], [latex]y_{h}[/latex] – координаты домика ослика [latex](-10^5leq x_{h}, y_{h}leq 10^5)[/latex]
.

Выходные данные

Вывести Good night Ia, если ослик успеет дойти домой до заката солнца или Poor Ia в противоположном случае.

Тесты

Входные данные
Выходные данные
[latex]1[/latex] [latex]5[/latex] [latex]3[/latex] [latex]2[/latex]

 

[latex]5[/latex] [latex]7[/latex]

Good night Ia
[latex]5[/latex] [latex]2[/latex] [latex]3[/latex] [latex]9[/latex]

 

[latex]15[/latex] [latex]15[/latex]

Good night Ia
[latex]4[/latex] [latex]4[/latex] [latex]3[/latex] [latex]20[/latex]

 

[latex]105[/latex] [latex]-105[/latex]

Poor Ia
[latex]3[/latex] [latex]4[/latex] [latex]2[/latex] [latex]3[/latex]

 

[latex]40[/latex] [latex]-20[/latex]

Good night Ia
[latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex]

 

[latex]-24[/latex] [latex]0[/latex]

Poor Ia
[latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex]

 

[latex]-23[/latex] [latex]0[/latex]

Good night Ia

Первый вариант кода программы

Второй вариант кода программы

Решение задачи

Вариант 1

Разделим решение задачи на две части: поиск местоположения Иа после прогулки и расчет пути домой.
Имеем следующую формулу вычисления вектора нахождения Иа после прогулки:
[latex]sumlimits_{i=0}^k f(i, n)[/latex], где [latex]n[/latex] — изменение количества шагов Иа в каждой итерации, [latex]k[/latex] — cколько раз он менял движение, и функции:

[latex]f(x,y) = begin{cases} left langle1 + xy, 1 + xyright rangle & textit{if } xvdots 4 = 0 \ left langle1 + xy, (-1) cdot (1 + xy)right rangle & textit{if } xvdots 4 = 1 \ left langle(-1) cdot (1 + xy), (-1) \cdot (1 + xy)right rangle & textit{if } xvdots 4 = 2 \ left langle(-1) cdot (1 + xy), 1 + xyright rangle & textit{if } xvdots 4 = 3 end{cases}[/latex]

То есть, результат функции [latex]f(x,y)[/latex] это вектор, на который передвинулся Иа в итерации номер [latex]x[/latex] с изменением шага [latex]y[/latex], а результат [latex]sumlimits_{i=0}^k f(i, n)[/latex] — это вектор [latex]left langle a,b right rangle[/latex] местоположения Иа в конце прогулки. Теперь нужно посчитать расстояние между местоположением Иа и его домом. Считаем из вектора [latex]left langle a,b right rangle[/latex] и вектора [latex]left langle x_{h},y_{h} right rangle[/latex]:

$$sqrt{(x_{h} — a)^2 + (y_{h} — b)^2}$$

И считаем максимальное расстояние, которое может пройти Иа до заката солнца. Тут нужно учесть то, что скорость в условии измеряется в шагах в час, а шаг это расстояние между [latex]left langle 0,0 right rangle[/latex] и [latex]left langle 1,1 right rangle[/latex], то есть — [latex]sqrt{2}[/latex].

$$ sqrt{2} tv$$

Итого, выводим Good night Ia, если [latex]2t^2v^2 geq (x_{h} — a)^2 + (y_{h} — b)^2[/latex] и Poor Ia в противном случае.

Вариант 2

Если рассмотреть каждое направление спирали, как элемент арифметической прогрессии, то можно следующим образом получить алгоритм решения данной задачи с вычислительной сложностью [latex]O(1)[/latex]. Используем сумму арифметической прогрессии $S = displaystylefrac{a_1 + a_m}{2}$, где $a_m = 1+(m-1)d$

Для направления на северо-восток:
$$a_1 = 1, d = 4n Rightarrow S_{1}=frac{1 + 1 +4n(m_1-1)}{2}Rightarrow S_{1} = m_1(1+2n(m_1-1)),$$
где $m_1 = displaystylefrac{k+1}{4} + 1,$ если$ (k+1)vdots 4 >=1$ иначе, $m_1=displaystylefrac{k+1}{4}$

Для направления на юго-восток:
$$a_2 = 1+n, d = 4n Rightarrow S_{2} = m_2(1+n+2n(m_2-1)),$$
где $m_2 = displaystylefrac{k+1}{4} + 1,$ если$ (k+1)vdots 4 >=2$ иначе, $m_2=displaystylefrac{k+1}{4}$

Для направления на юго-запад:
$$a_3 = 1+2n, d = 4n Rightarrow S_{3} = m_3(1+2n+2n(m_3-1)),$$
где $m_3 = displaystylefrac{k+1}{4} + 1,$ если$ (k+1)vdots 4 >=3$ иначе, $m_3=displaystylefrac{k+1}{4}$

Для направления на северо-запад:
$$a_4 = 1+3n, d = 4n Rightarrow S_{4} = m_4(1+3n+2n(m_4-1)),$$
где $m_4 = displaystylefrac{k+1}{4} + 1,$ если$ (k+1)vdots 4 >=4$ иначе, $m_4=displaystylefrac{k+1}{4}$

Тогда, для вычисления координат [latex]left langle x,y right rangle[/latex] воспользуемся следующей формулами:
$$x = S_{1} + S_{2} — S_{3} — S_{4}$$
$$y = S_{1} — S_{2} — S_{3} + S_{4}$$
Последующие вычисления эквивалентны первому варианту решения.

Ссылки

Условие задачи на e-olymp
Код решения первого варианта на ideone.com
Код решения второго варианта на ideone.com

e-olymp 1210. Очень просто!!!

Задача

По заданным числам [latex]n[/latex] и [latex]a[/latex] вычислить значение суммы: [latex]\sum\limits_{i=1}^{n} {i \cdot a^i}[/latex]

Входные данные

Два натуральных числа [latex]n[/latex] и [latex]a[/latex].

Выходные данные

Значение суммы. Известно, что оно не больше [latex]10^{18}[/latex].

Тесты

Входные данные Выходные данные
3 3 102
4 4 1252
9 3 250959
7 14 785923166
1009 1 509545

Код программы

Решение задачи

Данную задачу можно решить прямым линейным вычислением значений элементов заданного ряда, то есть получать значение элемента ряда с индексом [latex]i[/latex] умножением [latex]a[/latex] (которое необходимо возвести в степень [latex]i[/latex]) на индекс [latex]i[/latex] и накапливать сумму этих значений в выделенной переменной.
Но безусловно такое решение не является качественным (даже если будет использован алгоритм бинарного возведения в степень).

Для получения качественного решения распишем ряд подробно:
[latex]A[/latex] [latex]=[/latex] [latex]\sum\limits_{i=1}^{n} {i \cdot a^i}[/latex] [latex]=[/latex] [latex]a+2a^2+3a^3+\ldots+\left( n-1 \right) a^{n-1}+na^{n}[/latex] [latex]=[/latex] [latex]na^{n}[/latex] [latex]+[/latex] [latex]\left( n-1 \right)a^{n-1}[/latex] [latex]+[/latex] [latex]\ldots[/latex] [latex]+[/latex] [latex]3a^{3}[/latex] [latex]+[/latex] [latex]2a^2[/latex] [latex]+[/latex] [latex]a[/latex].
Очевидно, что из полученного выражения можно вынести [latex]a[/latex] за скобки. Применим данную операцию:
[latex]A[/latex] [latex]=[/latex] [latex] \left( na^{n-1}+\left( n-1 \right)a^{n-2}+\ldots+3a^{2}+2a+1\right) \cdot a[/latex]
Из полученной формулы видно, что аналогичное действие можно применить вновь, для внутреннего выражения [latex]na^{n-1}[/latex] [latex]+[/latex] [latex]\left( n-1 \right)a^{n-2}[/latex] [latex]+[/latex] [latex]\ldots[/latex] [latex]+[/latex] [latex]3a^{2}[/latex] [latex]+[/latex] [latex]2a[/latex]. Получим:
[latex]A[/latex] [latex]=[/latex] [latex] \left( \left( na^{n-2}+\left( n-1 \right)a^{n-3}+\ldots+3a+2 \right) \cdot a +1 \right) \cdot a[/latex].
После конечного количества вынесений за скобки, получим:
[latex]A[/latex] [latex]=[/latex] [latex]\left( \left( \ldots \left( \left(na+\left(n-1\right)\right) \cdot a + \left(n-2\right) \right) \ldots+2\right) \cdot a +1\right) \cdot a[/latex].

Таким образом, решение данной задачи сводится к вычислению суммы «изнутри» скобок.

Но из-за того, что в условии подано ограничение только на сумму, программа с реализованным вычислением суммы изнутри и асимптотикой [latex]O \left( n \right)[/latex] не пройдёт все тесты системы www.e-olymp.com в силу частного случая [latex]a = 1[/latex], так как значение [latex]n[/latex] может быть для него достаточно большим, ибо числа [latex]a[/latex] и [latex]n[/latex] компенсируют друг-друга по отношению к максимальному значению суммы. Но в случае [latex]a = 1[/latex] сумма данного ряда является суммой арифметической прогрессии, а именно — натурального ряда. Для вычисления этой суммы существует формула [latex]\sum\limits_{i=1}^{n} {i} = \frac{n \left( n+1 \right)}{2}[/latex]. Этот частный случай легко отсеять.

Асимптотика программы: [latex]const[/latex] при [latex]a = 1[/latex], и [latex]O \left( n \right)[/latex] иначе.

Ссылки

e-olymp 112. Торт

В честь дня рождения наследника Тутти королевский повар приготовил огромный праздничный торт, который был подан на стол Трем Толстякам. Первый толстяк сам мог бы целиком его съесть за $t_1$ часов, второй — за $t_2$ часов, а третий — за $t_3$ часов.

Сколько времени потребуется толстякам, чтобы съесть весь праздничный торт вместе?

Входные данные

Единственная строка содержит три целых неотрицетельных числа $t_1$, $t_2$ и $t_3$, каждое из которых не превосходит $10000$.

Выходные данные

Вывести время в часах, за которое толстяки вместе могут съесть торт. Результат округлить до двух десятичных знаков.

TESTS

$t_1$

$t_2$

$t_3$

$t$

3 3 3 1.00
4 67 50 3.51
228.22 8 2.28 1.76
1577 157.7 15.77 14.21

C ветвлением:

Без ветвления:

 

Решение с ветвлением

Первый толстяк ест со скоростью один торт за $t_1$ часов. Аналогично и с остальными толстяками. Тогда из торта следует вычесть те части, которые съест каждый, чтобы торта не осталось. Получается уравнение
$1-\frac{t}{t_1}-\frac{t}{t_2}-\frac{t}{t_3}=0;$
$\frac{t}{t_1}+\frac{t}{t_2}+\frac{t}{t_3}=1;$
$\frac{tt_2t_3+tt_1t_3+tt_1t_2}{t_1t_2t_3}=1;$
$t\left(t_1t_2+t_2t_3+t_1t_3\right)=t_1t_2t_3;$
$t = \frac{t_1t_2t_3}{t_1t_2+t_2t_3+t_1t_3};$
Рассматриваем случай, при котором одна из переменных равна нулю, тогда выводим ноль. В противном случае выводим значение $t$ с округлением до сотых.

Решение без ветвления

Так как по условию задачи первый толстяк съедает весь торт за $t_1$ часа, второй — за $t_2$ часа и третий — за $t_3$ часа, то их скорость поедания торта составит $\frac{1}{t_1}$, $\frac{1}{t_2}$ и $\frac{1}{t_3}$ торта в час соответсвенно. Если толстяки будут есть торт одновременно, то в час они будут съедать $\left(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}\right)$ часть торта. Тогда весь торт будет съеден за $\frac{1}{\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}}$ часов.
Затем нужно вывести результат, округлённый до двух десятичных знаков. Для этого воспользуемся функцией setprecision() и её аргументом fixed

Ссылки

Условие задачи e-olymp
Код решения

e-olymp 1078. Степень строки

Задача

Обозначим через [latex]a \cdot b[/latex] конкатенацию строк [latex]a[/latex] и [latex]b[/latex].

Например, если [latex]a =[/latex]«abc» и [latex]b =[/latex]«def» то [latex]a \cdot b =[/latex]«abcdef».

Если считать конкатенацию строк умножением, то можно определить операцию возведения в степень следующим образом:
[latex]a^{0} =[/latex]«» (пустая строка)
[latex]a^{n+1} = a \cdot a^{n}[/latex]

По заданной строке [latex]s[/latex] необходимо найти наибольшее значение [latex]n[/latex], для которого [latex]s = a^{n}[/latex] для некоторой строки [latex]a[/latex].

Входные данные

Каждый тест состоит из одной строки [latex]s[/latex], содержащей печатные (отображаемые) символы. Строка [latex]s[/latex] содержит не менее одного и не более миллиона символов.

Выходные данные

Для каждой входной строки [latex]s[/latex] вывести в отдельной строке наибольшее значение [latex]n[/latex], для которого [latex]s[/latex] = [latex]a^{n}[/latex] для некоторой строки [latex]a[/latex].

Тесты

Входные данные Выходные данные
abcabc
gcdgcd
gcgcgc
gggggg
hhhh
2
2
3
6
4
BbbbBbbbBbbb
dogdogdog
aaaaaaaa
cstring
3
3
8
1

Код программы (c-string)

Решение задачи (c-string)

Из условия следует, что степень строки определяется максимальным числом одинаковых подстрок. В таком случае степень строки является одним из делителей длины этой строки, и очевидно, что максимальная степень строки будет обратно пропорциональна максимальной длине подстроки.

Для решения поставленной задачи используем функцию cstringpow, которая в качестве аргумента принимает строку, и возвращает её степень. Реализуем эту функцию следующим образом: вначале ищем делители значения переменной size (с использованием счётчика i в цикле), в которую было предварительно была сохранена длина строки, полученная функцией strlen. Числа, которые будут получатся из выражения size/i, будут предполагаемой максимальной степенью строки. Естественно, они будут находится в порядке убывания.
Найденные счётчиком делители будут представлять из себя длины подстрок, на которые можно полностью разбить данную строку. Затем, используя функцию strncmp, сравниваем каждую подстроку. В случае, если какие-то из подстрок не совпали, то предположенная максимальная степень строки не является верной, и необходимо искать следующую. Иначе (если несовпадающих подстрок не найдено, то) значение выражения size/i будет ответом на поставленную задачу. В крайнем случае, необходимое разбиение строки не будет найдено, и тогда совокупностью одинаковых подстрок будет сама строка, а следовательно её степень равна [latex]1[/latex].

Код программы (string)

Решение задачи (string)

Решение задачи с использованием класса string аналогично. Единственное отличие — замена функций strlen и strncmp, предназначенных для работы с c-string, на эквивалентные им методы класса string size и compare.

Ссылки

e-olymp 3358. Чёрный ящик

Задача

В черный ящик кладутся листки с написанными на них числами. На каждом листке — ровно одно целое число. Иногда некоторые листки исчезают из ящика. После каждого события (когда в ящик положили листок, или когда из ящика исчез листок), нужно вывести число, которое встречается чаще всего на листках, находящихся в данный момент в ящике. Если таких чисел несколько, выведите наименьшее.

Входные данные

Первая строка содержит количество событий [latex]n[/latex] [latex]\left(1 \le n \le 2 \times 10^{5} \right)[/latex]. Каждая из следующих n строк содержит описание одного события:

  • [latex]+ x[/latex] — положен листок с числом [latex]x[/latex] [latex]\left(1 \le x \le 10^{6} \right)[/latex];
  • [latex]- x[/latex] — исчез листок с числом [latex]x[/latex] (гарантируется, что в ящике был хотя бы один листок с числом [latex]x[/latex]).

Выходные данные

Вывести в точности [latex]n[/latex] строк — по одной для каждого события. Каждая строка должна содержать одно число — ответ к задаче. Если после какого-то события ящик оказался пуст, следует вывести [latex]0[/latex].

Тесты

Входные данные Выходные данные
3
+ 1
— 1
+ 2
1
0
2
6
+ 1
+ 1000000
— 1
+ 4
+ 4
— 1000000
1
1
1000000
4
4
4
8
+ 71
+ 91
+ 99
+ 71
— 71
— 91
— 71
— 99
71
71
71
71
71
71
99
0

Код программы

Решение задачи

Проанализируем задачу: так как требуется вывести число, которое встречается чаще всего на листках, находящихся в ящике после запроса удаления/добавления, а если таких чисел несколько, то вывести наименьшее, то задачу можно переформулировать следующим образом:

«Даётся последовательность (массив) объектов leaf [latex]x_{1}[/latex], [latex]x_{2}[/latex], [latex]x_{3}[/latex], [latex]\ldots[/latex], [latex]x_{999999}[/latex], [latex]x_{1000000}[/latex], представляющих из себя пару (number, amount)[latex]=x_{i}=\left(i, a_{i}\right) \in {\mathbb{N}_{0}}^{2}[/latex], где первые элементы пар [latex]i[/latex] представляет из себя число/номер листка, а вторые элементы [latex]a_{i}[/latex] — число листков с этим номером. Изначально все элементы пар [latex]a_{i}[/latex] равны нулю (так как изначально ящик пуст). Для запросов первого типа [latex]+ x[/latex] необходимо увеличивать на единицу число [latex]a_{i}[/latex] объекта, у которого номер [latex]i[/latex] равен [latex]x[/latex], а для запросов второго типа — уменьшать. Для каждого запроса необходимо вывести число [latex]j[/latex], удовлетворяющее условию [latex]j = \min\limits_{i \in \mathbb{K}}{i}[/latex], где [latex]\mathbb{K} = \{i \mid a_{i} = \max\limits_{k \in \{1, 2, \ldots, 1000000\}}{a_{k}} \}[/latex]».

Иными словами, число [latex]i[/latex] соответствует некоторому элементу [latex]x_{i} = \left(i, a_{i}\right)[/latex], который в свою очередь определяется операцией такой, что [latex]i[/latex] и [latex]a_{i}[/latex] удовлетворяют приведённым выше условиям. Очевидно, что данная операция является ассоциативной (как объединение минимума и максимума на заданных множествах), а потому для решения задачи воспользуемся универсальным деревом отрезков.

Создадим дерево отрезков box методом read_and_construct из объектов leaf. Так как нумерация листков начинается с единицы, а их число не превышает [latex]10^{6}[/latex], зададим размер базы дерева отрезков [latex]10^{6}+1[/latex], добавив неё элемент с индексом [latex]0[/latex]. Модифицируем метод read_and_construct таким образом, чтобы в функцию-препроцессор передавался номер элемента [latex]i[/latex], дабы была возможность задавать элементам [latex]x_{i}[/latex] их первоначальные значения [latex]\left(i, 0\right)[/latex]. Вышеупомянутую операцию назовём max_leafs и определим таким образом, чтобы она принимала два аргумента [latex]x_{i} = \left(i, a_{i}\right)[/latex] и [latex]x_{j} = \left(j, a_{j}\right)[/latex] и возвращала тот из них, у которого значение [latex]a[/latex] является большим, а в случае равенства этих значений — аргумент с меньшим индексом. Нейтральным элементом относительно данной операции будет, очевидно, пара [latex]\left(+\infty, 0\right)[/latex], но в силу того, что номера элементов не превышают [latex]10^6[/latex], вместо неё мы будем пользоваться парой [latex]\left(2 \times 10^{6}, 0\right)[/latex].

Далее при запросах вида [latex]+ x[/latex] будем увеличивать соответствующее значение [latex]a_{x}[/latex] пары [latex]\left(x, a_{x}\right)[/latex] на единицу, а при запросах вида [latex]- x[/latex] — уменьшать. Для обоих запросов будем выводить номер заданного листка, который удовлетворяет приведённым в задаче условиям, с использованием метода result_on_segment на всём отрезке [latex]\left[0, 10^{6}\right][/latex]. Ответом для каждого запроса будет значение number пары, которую вернёт метод.

Примечание: ситуация когда ящик становится пустым нигде не обрабатывается, но в силу того, что мы определили массив на отрезке [latex]\left[0, 10^{6}\right][/latex] вместо [latex]\left[1, 10^{6}\right][/latex] в нём всегда есть пара [latex]\left(0, 0\right)[/latex] (листки с номером [latex]0[/latex], число (значение [latex]b[/latex]) которых всегда равно [latex]0[/latex] в силу того, что листки с номером [latex]0[/latex] в ящик не добавляются). Так как определённая нами операция всегда возвращает минимальный номер листка, число которого максимально, то в случае, когда ящик пуст (т.е. значения всех [latex]a_{i} = 0, i = 0, 1, \ldots, 10^{6}[/latex]) будет выводится номер листка [latex]0[/latex]. Этот побочный эффект данного нами определения массива решает эту ситуацию и завершает решение задачи.

Ссылки

KM2. Радиус окружностей, удовлетворяющих условию

Задача

Дана сфера радиуса [latex]1[/latex]. На ней расположены равные окружности [latex]\gamma_0[/latex], [latex]\gamma_1[/latex], [latex]\ldots[/latex], [latex]\gamma_n[/latex] радиуса [latex]r \left(n \ge 3\right)[/latex]. Окружность [latex]\gamma_0[/latex] касается всех окружностей [latex]\gamma_1[/latex], [latex]\ldots[/latex], [latex]\gamma_n[/latex]; кроме того, касаются друг друга окружности [latex]\gamma_1[/latex] и [latex]\gamma_2[/latex]; [latex]\gamma_2[/latex] и [latex]\gamma_3[/latex]; [latex]\ldots[/latex]; [latex]\gamma_n[/latex] и [latex]\gamma_1[/latex].
При каких [latex]n[/latex] это возможно? Вычислить соответствующий радиус [latex]r[/latex].

Входные данные

Количество окружностей [latex]n[/latex].

Выходные данные

Радиус окружностей [latex]r[/latex].

Тесты

Входные данные ([latex]n[/latex]) Выходные данные ([latex]r[/latex])
3 0.816497
4 0.707107
5 0.525731
6 Solution does not exist.

Код программы

Решение задачи

Каждой окружности на сфере можно сопоставить её «центр на сфере» — конец радиуса сферы, проходящего через центр окружности (никогда не лежащий на сфере). Эту точку мы будем называть «центром» окружности в кавычках, подчёркивающих, что это не «обычный» центр (рис. 2, а).

Заметим для точности, что такого определённого «центра» нет у окружностей больших кругов сферы. Но окружности, о которых идёт речь в условии задачи, заведомо не могут иметь радиус [latex]1[/latex], потому что окружности двух больших кругов не могут друг друга касаться, — они всегда пересекают друг друга в двух диаметрально противоположных точках сферы.

Точка касания двух окружностей, расположенных на сфере (см. рис. 2, б), лежит в плоскости [latex]P[/latex], проходящей через центры окружностей и центр сферы. Действительно, обе окружности симметричны относительно плоскости [latex]P[/latex], и если бы они имели общую точку по одну сторону плоскости [latex]P[/latex], то должны были бы иметь и симметричную ей общую точку по другую сторону [latex]P[/latex], а у них всего одна общая точка. Если эти окружности имеют один и тот же радиус [latex]r[/latex], то расстояние между их «центрами» равно [latex]2r[/latex], потому что на окружности большого круга, получающейся в пересечении сферы и плоскости [latex]P[/latex] (рис. 2, в), диаметры наших окружностей (чёрные отрезки) и отрезок, соединяющий их «центры» (красный), стягивают равные дуги.

Пусть [latex]A_0[/latex], [latex]A_1[/latex], [latex]A_2[/latex], [latex]\ldots[/latex], [latex]A_n[/latex] — «центры» окружностей [latex]\gamma_0[/latex], [latex]\gamma_1[/latex], [latex]\ldots[/latex], [latex]\gamma_n[/latex], о которых идёт речь в условии задачи. Тогда [latex]A_0 A_1=A_0 A_2=\ldots=A_0 A_n=A_1 A_2=A_2 A_3=\ldots=A_n A_1=2r[/latex], другими словами, [latex]A_0 A_1 A_2 \ldots A_n[/latex] — правильная [latex]n[/latex]-угольная пирамида с вершиной [latex]A_0[/latex], у которой все боковые грани — равносторонние треугольники со сторонами равными [latex]2r[/latex]. Итак, достаточно построить пирамиду, для которой выполнены эти условия, тогда точки [latex]A_0[/latex], [latex]A_1[/latex], [latex]\ldots[/latex], [latex]A_n[/latex] будут определять окружности радиуса [latex]r[/latex], с «центрами» [latex]A_0[/latex], [latex]A_1[/latex], [latex]\ldots[/latex], [latex]A_n[/latex], которые, очевидно, удовлетворяют условию задачи.

Поскольку сумма плоских углов выпуклого [latex]n[/latex]-гранного угла с вершиной [latex]A_0[/latex] меньше [latex]360^\circ[/latex]:
[latex]n\cdot60^\circ=[/latex]∠[latex]A_1 A_0 A_2+[/latex]∠[latex]A_2 A_0 A_3+\ldots+[/latex]∠[latex]A_n A_0 A_1<360^\circ[/latex], то [latex]n<6[/latex]. Для [latex]n=3[/latex], [latex]4[/latex] и [latex]5[/latex] нетрудно построить нужные пирамиды.

Пусть [latex]O[/latex] — центр сферы. Высота пирамиды [latex]h[/latex] и длина её рёбер [latex]2r[/latex] находятся из следующих соображений: радиус [latex]K A_1[/latex] основания пирамиды — катет [latex]\bigtriangleup A_0 K A_1[/latex] и боковая сторона [latex]\bigtriangleup A_1 K A_2[/latex], где ∠[latex]A_1 K A_2=2 \pi / n[/latex] (рис. 3, а , б),
[latex]\sqrt{4 r^2-h^2 \sin \frac{\pi}{n}}=r[/latex]

Из [latex]\bigtriangleup A_0 O A_1[/latex] имеем [latex]r=\frac{h}{2r}[/latex].

Отсюда [latex]h=2 r^2[/latex], [latex]r=\sqrt{1-\frac{1}{4 \sin^2 \frac{\pi}{n}}}[/latex]

Таким образом,
при [latex]n=3[/latex]: [latex]r=\sqrt{\frac{2}{3}}[/latex] [latex]\left( \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \right)[/latex]
при [latex]n=4[/latex]: [latex]r=\sqrt{\frac{1}{2}}[/latex] [latex]\left( \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2} \right)[/latex]
при [latex]n=5[/latex]: [latex]r=\sqrt{\frac{1-\sqrt{5}}{2}}[/latex]
(формулу [latex]\sin \frac{\pi}{5}=\frac{\sqrt{10-2 \sqrt{5}}}{4}[/latex] можно вывести из рисунка 4, с помощью которого строятся правильный десятиугольник и правильный пятиугольник).

Рисунки, использованные в решении

Рисунок 2:

Рисунок 3:

Рисунок 4:

Научно-популярный журнал «Квант», 1970 год, №7, страницы 51-53

Итоги:
Выведенная во время решения формула [latex]r=\sqrt{1-\frac{1}{4 \sin^2 \frac{\pi}{n}}}[/latex] справедлива только при [latex]n=3[/latex], [latex]4[/latex], [latex]5[/latex]. В случае, если задать значения больше этих, то выражение под корнем примет отрицательное значение, а в рамках данной задачи это будет говорить об отсутствии решения. Значения же меньше будут недопустимы, что было указано в условии.
Таким образом, программа выведет сообщение об отсутствии решения, если заданные значения [latex]n[/latex] отличны от вышеупомянутых. Если же условия будут соблюдаться, то задача выведет соответствующее значение радиуса.

Ссылки

KM63

Задача М63 из журнала «Квант» №1 за 1971 год, стр.39. Автор А.А. Кириллов.
Можно ли из плиток размером 1х2 сложить четырехугольник размером [latex] M\times N [/latex] так, чтоб при этом не было ни одного прямого «шва», соединяющего стороны квадрата и идущие по краям плиток.
km63

Изображение как на рисунке не годиться так как тут есть «шов» [latex] AB [/latex].

Входные данные
Размеры четырёхугольника [latex] M [/latex] и [latex] N [/latex].

Выходные данные
Возможно ли это сделать [latex] Yes [/latex] или не возможно [latex] No [/latex].

Тесты

вводимые данные выводимые данные
M N возможно || не возможно
2 16 no
6 6 no
66 69 yes
16 5 yes
99 71 no
7 7 no
78 77 yes
7 8 yes

Код задачи

Решение
Легко доказать, что прямоугольники [latex] {2\times m}, [/latex] [latex] {3\times m}, [/latex] [latex] {4\times m} [/latex] разрезать таким образом нельзя. Если же [latex] {m\geq{5}}, [/latex] [latex] {n\geq{5}} [/latex] и [latex] mn [/latex] четно (последнее условие разумеется необходимо), то во всех случаях кроме [latex]{6\times 6}[/latex] нужное разбиение существует.
Ссылки
ideone

e-olymp 1077. Java против C++

Задача. Сторонники языков Java и C++ часто спорят о том, какой язык лучше для решения олимпиадных задач. Одни говорят, что в Java есть масса полезных библиотек для работы со строками, хорошо реализованы механизмы чтения и вывода данных, а так же радует встроенные возможности для реализации длинной арифметики. С другой стороны, С++ является классическим языком, скорость выполнения программ благодаря существующим компиляторам (например, Intel Compiler 10.0) гораздо выше, чем у Java.

Но сейчас нас интересует лишь небольшие отличия, а именно соглашения, которыми пользуются программисты при описании имен переменных в Java и C++. Известно, что для понимания значений переменных часто используют английские слова или даже целые предложения, описывающие суть переменных, содержащих те или иные значения. Приведем ниже правила описания переменных, которыми руководствуются программисты, реализующие программы на Java и C++.

В языке Java принято первое слово, входящее в название переменной записывать с маленькой латинской буквы, следующее слово идет с большой буквы (только первая буква слова большая), слова не имеют разделителей и состоят только из латинских букв. Например, правильные записи переменных в Java могут выглядеть следующим образом: javaIdentifier, longAndMnemonicIdentifier, name,nEERC.

В языке C++ для описания переменных используются только маленькие латинские символы и символ «_», который отделяет непустые слова друг от друга. Примеры: java_identifier, long_and_mnemonic_identifier, name, n_e_e_r_c.

Вам требуется написать программу, которая преобразует переменную, записанную на одном языке в формат другого языка.

Входные данные

Во входном файле задано наименование переменной длиной не более [latex]100[/latex] символов.

Выходные данные

В выходной файл требуется вывести аналог имени переменной в другом языке. Т.е. если переменная представлена в формате Java, то следует перевести в формат C++ и наоборот. В том случае, когда имя переменной не соответствует ни одному из вышеописанных языков, следует вывести «Error!«.

Задача взята с сайта e-olymp.

Тесты

Test Input Output
1 java_word javaWord
2 cppWorD cpp_wor_d
3 simpleword simpleword
4 two__underscores Error!
5 _underscore_in_the_beginning Error!
6 underscore_in_the_end_ Error!
7 UppercaseInTheBeginning Error!
8 mixed_Style Error!

Код программы

 

Алгоритм

Чтобы осуществить перевод строки с одного языка программирования на другой, нам нужно для начала определить, к какому языку она принадлежит. Для решения этой подзадачи я использовала алгоритм, основанный на присваивании строке так называемого состояния — некоторой константы, которой соответствует определенная категория строк. В начальный момент все строки находятся в состоянии Start. Состояние меняется в процессе посимвольного анализа строки. После просмотра последнего символа мы получаем нужный результат.

Для удобства я изобразила этот алгоритм в виде схемы:

MMMMEWWWWWW

*круговая стрелочка означает, что мы остаемся в этом же состоянии.

*над стрелочками перехода указаны символы, после считывания которых этот переход осуществляется. Если  ничего не указано, значит для перехода в следующее состояние достаточно считать любой символ, кроме символов, указанных над стрелочками альтернативных вариантов перехода. Такие обозначения удобны, если исключений больше, чем правил.

Когда мы считываем очередной символ, мы переходим в другое состояние либо остаемся в предыдущем. В состояние Error(отмечено красным) мы переходим, если считаем какую-любо последовательность символов, не подходящую ни под один из стандартов.

Отдельно следует поговорить о состоянии CPP delimeter. Оно используется для контроля количества подчеркиваний. Если в нашей предполагаемой С++ переменной встречается подчеркивание, ей сразу же присваивается данное состояние, чтобы, при наличии второго подчеркивания сразу же перевести ее в состояние Error in CPP.

Финальные состояния отмечены зеленым цветом. В них мы переходим только после окончания строки непосредственно из предыдущего состояния.  Переход в состояние Universal означает, что исходная строка состоит исключительно из маленьких букв и подходит как для языка Java, так и для C++.

Определив стандарт, к которому принадлежит переменная, мы вызываем блок перевода. Результат всегда записываем в отдельную переменную. В случае Java мы снова последовательно перебираем все символы строки и заменяем каждую встретившуюся большую букву на подчеркивание и эту же букву в маленьком регистре. Размер строки в этом случае увеличивается на количество больших букв в ее исходном варианте.  В случае же С++ мы удаляем каждое подчеркивание, сдвигая все последующие символы, а первый из них переводим в большой регистр. Очевидно, что размер строки в этом случае будет уменьшен на количество подчеркиваний.

Код программы

Засчитаное решение на сайте e-olymp