e-olymp 7367. Спортсмен

Задача

Спортсмен в первый день пробежал 10 км. Каждого следующего дня он увеличивал норму на 10% от нормы предыдущего дня. Опредилить через какое найменьшее количество дней спортсмен пробежит сусмарный путь не меньший чем [latex]N[/latex] км.

Входные данные

Целое число [latex]N (0 < N≤ 1000)[/latex].

Выходные данные

Единственное число – количество дней.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 9 1
2 45 4
3 324 16
4 1234 28
5 213213123 153

Код программы №1 (с использованием цикла):

Решение задачи:

Сначала вводим 4 переменные: [latex] k=1 [/latex] ( количество дней ), [latex] T=10 [/latex] ( количество километров которое спортсмен пробежал ), [latex] N [/latex] ( количество километров которое спортсмен должен пробежать ) и [latex] S [/latex] ( количество километров которое спортсмен пробегает в день ). Цикл каждый раз будет прибавлять к расстоянию которое пробежал спортсмен, количество километров которое спортсмен должен пробежать в течение следующего дня, с учетом того, что каждый день он будет пробегать на [latex] 10 [/latex] процентов больше, чем в прошлый день, параллельно увеличивая количество дней, пока [latex] N [/latex] будет больше [latex] T [/latex]. Если же [latex] N [/latex] при вводе изначально будет меньше [latex] T [/latex], то программа выведет, что спортсмену достаточно одного дня.

  • Время срабатывания программы при [latex]N = 1000[/latex] : [latex]65[/latex] [latex]ms[/latex]

 

Ссылки

  • Задача на сайте e-olymp
  • Код решения в Ideone

Код программы №2(с использованием линейных вычислений):

Решение задачи:

Также данную задачу можно решить с помощью формулы геометрической прогрессии [latex]S=\frac{b_1(q^n-1)}{q-1}[/latex] из которой нам нужно будет выразить степень [latex] n [/latex] через логарифм при условии того, что по условию задачи мы знаем, что [latex] q=1.1 [/latex] и [latex] b_1=1 [/latex]. И мы получаем, что [latex] \left(n=\log_{1.1}\left(\frac{s}{100}+1\right)\right) [/latex]. При записи логарифма по основанию в С++ мы пользуемся основным свойством логарифмов: [latex] \log_{a}\left(b\right)=\frac{\log_{c}\left(b\right)}{\log_{c}\left(a\right)} [/latex]. Также используем функцию сeil, которая округлит выходное число вверх, до ближайшего целого. ( [latex] S [/latex] — количество километров, которое должен пробежать спортсмен ).

  • Время срабатывания программы при [latex]N = 1000[/latex] : [latex]76[/latex] [latex]ms[/latex]

Ссылки

e-olimp 146. Квадраты — 2

Задача

В белом квадрате [latex]N[/latex] раз выполнили одну и ту же операцию: один из наименьших белых квадратов разбили на 4 одинаковых квадрата и из них закрасили черным цветом. Для данного [latex]N[/latex] вычислить, сколько процентов занимает площадь черной фигуры.

Входные данные

Во входном файле одно число [latex]N[/latex]. [latex]1 ≤ N ≤ 100[/latex].

Выходные данные

В выходной файл нужно записать ответ, вычисленный с точностью 5 знаков после запятой по правилам математических округлений.

Тесты

Входные данные Выходные данные
1 50.00000
3 65.62500
10 66.66660
50 66.66667
100 66.66667

Код программы

Решение задачи

При [latex]N=1[/latex] площадь черной фигуры составляет [latex]50\%[/latex]. При [latex]N=2[/latex] площадь фигуры равна [latex]50\%+50\%\cdot 1/4[/latex]. При [latex]N=3[/latex] площадь черной фигуры составляет [latex]50\%+50\%\cdot 1/4+50\%\cdot 1/16[/latex]. Очевидно, что перед нами геометрическая прогрессия. Процент, занимаемый площадью черной фигуры, будем искать через сумму геометрической прогресcии: [latex]S_n={{b_1(1-q^N)}\over{1-q}}[/latex], где [latex]q={{b_2}\over{b_1}}={{12.5}\over{50}}=0.25[/latex], [latex]N-[/latex]кол-во операций.

Ссылки

Условие задачи на e-olymp
Код решения

D2547. Cумма ряда

Задача

Доказать сходимость и найти сумму ряда [latex]\sum \limits_{n=1}^{\infty}\left(\frac{1}{2^n}+\frac{1}{3^n}\right)[/latex].

Код на C++

Код на Java

Решение

Разобьем ряд на два: [latex]\frac{1}{2^n}[/latex] и [latex]\frac{1}{3^n}[/latex]. Оба ряда являются бесконечно убывающими геометрическими прогрессиями, следовательно они сходятся и сумма этих рядов тоже будет сходиться. Знаменателем первой прогрессии([latex]s_1[/latex]) будет [latex]\frac{1}{2}[/latex], а знаменателем второй([latex]s_2[/latex]) — [latex]\frac{1}{3}[/latex]. Тогда по формуле суммы бесконечно убывающей прогрессии: [latex]s=\frac{b_1}{1-q}[/latex], где [latex]b_1[/latex] первый член прогрессии, а [latex]q[/latex] — ее знаменатель. Затем суммируем суммы прогрессий и получаем ответ.

Ответ

[latex]\sum \limits_{n=1}^{\infty}\left(\frac{1}{2^n}+\frac{1}{3^n}\right)=\frac{3}{2}=1.5[/latex].

Ссылки

1.Решение на C++

2.Решение на Java

3.Решение на WolframAlpha