A1038

Калачьов Андрій Сергійович
Калачьов Андрій Сергійович

Latest posts by Калачьов Андрій Сергійович (see all)

Задача: Имеется [latex]n [/latex] городов. Некоторые из них соединены дорогами известной длины. Вся система дорог задана квадратной матрицей порядка  [latex]n [/latex], элемент [latex]a_{ij} [/latex] который равен некоторому отрицательному числу, если город [latex]i [/latex] не соединен напрямую дорогой с городом [latex]j [/latex] и равен длине дороги в противном случае latex [/latex].

  1. Для 1-го города найти кратчайшие маршруты в остальные города.
  2. В предположении, что каждый город соединен напрямую с каждым, найти кратчайший маршрут, начинающийся в 1-м городе и проходящий через все остальные города.

Входные данные:

4
-1 2 4 -1
2 -1 1 6
4 1 -1 1
-1 6 1 -1

Выходные данные:

1 > 2 = 2

1 > 3 = 3

1 > 4 = 4

Длина кратчайшей цепи, проходящей через все вершины 4

Ссылка на ideone: http://ideone.com/iXjoLZ

Решение:

Алгоритм: Для решения задачи применим алгоритм Дейкстры. Применяя этот алгоритм мы считаем что у нас нету ребер с отрицательным весом. Если вес ребра отрицательный, то его просто не существует (по условию задачи). Вводим матрицу смежности графа и проверяем является ли граф полным (для задания 2). Если граф является полным, то ищем для каждой вершины инцидентное ребро с минимальным весом и суммируем (задание 2). В цикле каждой вершине присваиваем минимально расстояние до нее от первой вершины и записываем в массив (задание 1).

e-olymp 1947. Конденсация графа

Условие задачи:

Для заданного ориентированного графа найти количество ребер в его конденсации.

Конденсацией орграфа G называют такой орграф G’, вершинами которого служат компоненты сильной связности G, а дуга в G’ присутствует только если существует хотя бы одно ребро между вершинами, входящими в соответствующие компоненты связности.

Конденсация графа не содержит кратных ребер.

Входные данные:

Первая строка содержит два натуральных числа n и m (n10000, m100000) — количество вершин и ребер графа соответственно. Каждая из следующих m строк содержит описание ребра графа. Ребро номер i описывается двумя натуральными числами [latex]b_{i}[/latex], [latex]e_{i}[/latex](1 ≤ [latex]b_{i}[/latex], [latex]e_{i}[/latex] ≤ n) — номерами начальной и конечной вершины соответственно. В графе могут присутствовать кратные ребра и петли.

Выходные данные:

Количество ребер в конденсации графа.

Тесты:

Входные данные Выходные данные
4 4 2
2 1
3 2
2 3
4 3
6 9 1
1 2
2 4
4 1
4 2
3 2
2 6
3 5
5 3
6 2

Описание решения задачи:

Компонентой сильной связности называется такое подмножество вершин C, что любые две вершины этого подмножества достижимы друг из друга. Отсюда следует, что конденсация это граф, получаемый из исходного графа сжатием каждой компоненты сильной связности в одну вершину. Отсюда имеем структуру [latex]vertex[/latex]. Основным фундаментом данного алгоритма является следующая теорема: Пусть [latex]C[/latex] и [latex]{C}'[/latex] — две различные компоненты сильной связности, и пусть в графе конденсации между ними есть ребро ([latex]C[/latex],[latex]C'[/latex]). Тогда время выхода из [latex]C[/latex] будет больше, чем время выхода из [latex]{C}'[/latex]. Базируясь на этом, выполним серию обходов в глубину с помощью функции [latex]dfs[/latex] _ [latex]g[/latex], посещая весь граф. С визитом всех вершин графа,запоминаем для каждой время выхода, записывая это в созданный [latex]list[/latex]. Далее строится транспонированный граф. Запускаем серию обходов в глубину(функция [latex]dfs[/latex] _ [latex]tg[/latex]) этого графа в порядке, определяемом списком [latex]list[/latex] (а именно, в обратном порядке, т.е. в порядке уменьшения времени выхода). Каждое множество вершин, достигнутое в результате рекурсивного запуска обхода, и будет очередной компонентой сильной связности. Окрасим все вершины каждой сильной компоненты связности в один уникальный цвет, для этого зададим в структуре параметр [latex]colour[/latex]. Число цветов окраски будет равно количеству компонент сильной связности. Далее перебираем все ребра исходного графа. Если ребро соединяет вершины разного цвета, то оно принадлежит конденсации графа. Для каждого ребра ([latex]a[/latex], [latex]b[/latex]), для которого [latex]components[a].colour[/latex] [latex]≠[/latex] [latex]components[b].colour[/latex], занесем во множество [latex]ribs[/latex] данную пару. Количество элементов во множестве [latex]ribs[/latex] будет равняться числу ребер в конденсации графа.

Условие задачи
Код задачи на с++
Засчитанное решение на e-olymp

Код Хаффмана

Задача

Дана строка, после которой следует символ перехода на следующую строку (далее — endl. Вывести:

  1. Код графа на языке DOT, иллюстрирующий кодирование символов строки;
  2. Символы строки и соответствующие им коды Хаффмана;
  3. Закодированную строку.

Входные данные

Некоторая последовательность символов и endl.

Выходные данные

  1. Код графа на языке DOT, иллюстрирующий кодирование символов строки;
  2. Символы строки и соответствующие им коды Хаффмана;
  3. Закодированная строка.

Тест

Входные данные Выходные данные
MOLOKO KIPIT digraph G {
"'MLO KITP', 12, code: ''" -> "'MLO', 5, code: '0'" [ label = "0" ];
"'MLO KITP', 12, code: ''" -> "' KITP', 7, code: '1'" [ label = "1" ];
"'MLO', 5, code: '0'" -> "'ML', 2, code: '00'" [ label = "0" ];
"'MLO', 5, code: '0'" -> "'O', 3, code: '01'" [ label = "1" ];
"'ML', 2, code: '00'" -> "'M', 1, code: '000'" [ label = "0" ];
"'ML', 2, code: '00'" -> "'L', 1, code: '001'" [ label = "1" ];
"' KITP', 7, code: '1'" -> "' K', 3, code: '10'" [ label = "0" ];
"' KITP', 7, code: '1'" -> "'ITP', 4, code: '11'" [ label = "1" ];
"' K', 3, code: '10'" -> "' ', 1, code: '100'" [ label = "0" ];
"' K', 3, code: '10'" -> "'K', 2, code: '101'" [ label = "1" ];
"'ITP', 4, code: '11'" -> "'I', 2, code: '110'" [ label = "0" ];
"'ITP', 4, code: '11'" -> "'TP', 2, code: '111'" [ label = "1" ];
"'TP', 2, code: '111'" -> "'T', 1, code: '1110'" [ label = "0" ];
"'TP', 2, code: '111'" -> "'P', 1, code: '1111'" [ label = "1" ];
}

Codes of letters:
'O'(01) 'K'(101) 'I'(110) 'T'(1110) 'P'(1111) 'M'(000) 'L'(001) ' '(100)

Encoded string:
00001001011010110010111011111101110

Код программы

Решение задачи

Для начала считываем посимвольно строку и запоминаем её, параллельно запоминая частоты появлений символов в ней в массиве count. Останавливаем считывание, когда встречается endl. После этого отсортировуем массив count в порядке убывания частот.

После этого элементы массива count, которые имеют ненулевую частоту, преобразовываем в элементы вектора tree (при этом символы конвертируются в строки), который после сортируется в порядке возрастания частот. Затем обрабатываем массив по алгортиму Хаффмана, объединяя элементы вектора с номерами [latex]j[/latex], [latex]j+1[/latex] в новый (который будет представлять собой структуру из конкатенации строк ранее упомянутых элементов и суммы их частот, а так же номеров его «предков»). После этого вектор вновь сортируется по частотам/суммам частот в порядке возрастания начиная с номера[latex]j+2[/latex], при этом элементы, которые имеют больший размер строк будут иметь меньший приоритет.

Такой алгоритм приводит к тому, что элементы с меньшей частотой/суммой частот не затрагиваются при добавлении новых, и система индексов (условных указателей на «предков») не нарушается.

После этого, используя поиск в глубину, кодируем элементы массива tree, начиная с последнего (строка которого в результате использования алгоритма всегда оказывается объединением всех символов). Остальная часть решения поставленной задачи — вопрос техники.

Ссылки

e-olimp 4852. Кратчайшее расстояние

Задача

Дан ориентированный граф. Найдите кратчайшее расстояние от вершины x до всех остальных вершин графа.

Входные данные

В первой строке содержатся два натуральных числа [latex]n[/latex] и [latex]x[/latex]  [latex]\left ( 1\leq n\leq 1000,1\leq x\leq n \right )[/latex] — количество вершин в графе и стартовая вершина соответственно. Далее в [latex]n[/latex] строках по [latex]n[/latex] чисел — матрица смежности графа: в [latex]i[/latex]-ой строке на [latex]j[/latex]-ом месте стоит [latex]1[/latex], если вершины [latex]i[/latex] и [latex]j[/latex] соединены ребром, и [latex]0[/latex], если ребра между ними нет. На главной диагонали матрицы стоят нули.

Выходные данные

Выведите через пробел числа [latex]d_1,d_2,[/latex][latex]\ldots[/latex][latex],d_i[/latex], где [latex]d_i[/latex] равно[latex]-1[/latex], если путей между [latex]x[/latex] и [latex]i[/latex] нет, в противном случае это минимальное расстояние между [latex]x[/latex] и [latex]i[/latex].

Тесты 

 Входные данные  Выходные данные
3 1
0 1 0
0 0 0
0 0 0
 0 1 -1
6 5
0 1 1 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 1 1 0 0
0 1 0 0 0 0
2 2 1 1 0 -1
3 1
0 1 0
1 0 1
0 1 0
0 1 2

 

Реализация

Засчитанное решение на e-olimp.com

Код на ideone.com

Решение

Для решения данной задачи необходимо применить  алгоритм Дейкстры . А именно, мы храним в массиве текущую длину наиболее короткого пути из заданной вершины во все остальные вершины графа. Положим, что изначально длина такого пути равна бесконечности ( при реализации просто используем достаточно большое число). А длина пути из заданной вершины до самой себя равна нулю. Обозначим, что вершина может быть помечена или не помечена. Изначально все вершины являются не помеченными. Далее выбираем  вершину [latex]v[/latex] с наименьшей длиной пути до заданной вершины и помечаем ее. Тогда просматриваем все ребра, исходящие из вершины [latex]v[/latex]. Пусть эти ребра имеют вид  [latex]\left ( v,t_0 \right )[/latex]. Тогда для каждой такой вершины [latex]t_0[/latex] пытаемся найти наиболее коротки путь из заданной вершины. После чего снова выбираем еще не помеченную вершину и проделываем вышеописанный алгоритм снова до тех пор, пока не останется не помеченных вершин. Найденные расстояния и будут наименьшими.

e-olymp 1948. Топологическая сортировка

Условие:
Дан ориентированный невзвешенный граф. Необходимо топологически отсортировать его вершины.

Входные данные

В первой строке содержатся количество вершин [latex]n[/latex] (1 ≤ [latex]n[/latex] ≤ 100000) и количество рёбер [latex]m[/latex] (1 ≤[latex]m[/latex] ≤ 100000) в графе. В следующих [latex]m[/latex] строках перечислены рёбра графа, каждое из которых задаётся парой чисел — номерами начальной и конечной вершины.

Выходные данные

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, то вывести -1.

Тесты:

Входные данные Выходные данные
6 6
1 2
3 2
4 2
2 5
6 5
4 6
4 6 3 1 2 5
2 2
1 2
2 1
-1
4 5
1 2
1 3
3 4
2 4
1 4
1 3 2 4
4 5
1 2
1 3
3 4
2 4
4 1
-1

Решение:

Описание решения:

Для решения данной задачи необходимо было воспользоваться алгоритмом топологической сортировки, посредством поиcка в глубину. Чтобы применить данный алгоритм, необходимо было проверить граф на ацикличность с помощью алгоритма поиска в глубину. Это было реализовано функцией [latex]cyclic[/latex], которая проходила по всему графу в поиске цикла. Если цикл был найден, то функция меняла значение переменной [latex]cycle_st[/latex]. Далее, если цикл был найден, то программа выводить -1, иначе применяется алгоритм топологической сортировки, реализованный в двух функциях:

и

После выполнения этих функций был получен топологически отсортированный список вершин, но в обратном порядке. Поэтому разворачиваем его с помощью функции [latex]reverse[/latex] .

Засчитанное решение на e-olymp.com.

Код решения на ideone.com.

e-olymp 2401. Обход в ширину

Андрей Яроцкий
Андрей Яроцкий

Latest posts by Андрей Яроцкий (see all)

Задача 2401

Условие

Дан неориентированный граф. В нём необходимо найти расстояние от одной заданной вершины до другой.

Входные данные

В первой строке содержится три натуральных числа [latex]n, s[/latex] и [latex]f (1 [/latex] [latex]\le[/latex] [latex]s, f[/latex] [latex]\le[/latex] [latex]n[/latex] [latex]\le[/latex] [latex]100)[/latex] — количество вершин в графе и номера начальной и конечной вершин соответственно. Далее в n строках задана матрица смежности графа. Если значение в [latex]j[/latex]-м элементе [latex]i[/latex]-й строки равно [latex]1[/latex], то в графе есть направленное ребро из вершины [latex]i[/latex] в вершину [latex]j[/latex].

Выходные данные

Вывести минимальное расстояние от начальной вершины до конечной. Если пути не существует, выведите [latex]0[/latex].

Тесты

Входные данные Выходные данные
1 1 1 1
1
0
2 3 1 3
0 1 0
1 0 0
0 0 0
0
3 4 4 3

0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

2
4 5 1 4
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0
2

 

Решение

Для решения данной задачи необходимо использовать алгоритм «Поиск  в ширину». Суть данного алгоритма полагает в том, что все вершины, начиная с начальной, помещаются в структуру очередь [latex](queue)[/latex] в порядке удаления от начальной вершины. По мере заполнения очереди, каждой вершине приписывается величина расстояния [latex](dist)[/latex] от начальной вершины, после чего соответствующая вершина помечается как пройденная [latex](used)[/latex] и её расстояние от начальной вершины более не переписывается даже при повторном просмотре. Таким образом, каждой вершине, для которой существует путь, соединяющий её с начальной вершиной, сопоставляется минимальное расстояние от нее до начальной вершины. Если такого пути не существует, расстояние остается равным нулю. Подробней об этом алгоритме можно прочесть здесь

Ссылки

Код программы на ideone.com

Условие задачи

Решенная задача