e-olymp 54. Мурзик

Задача

Весна… Прекрасное время! Все, казалось бы оживает и двигается, расцветает, начинается новый проход цикла жизни. И общеизвестный Мурзик не является исключением! Но если он чрезвычайно активен днем – то точно так же крепко спит ночью. Причем несчастный хищник видит преимущественно кошмары…

Одной ночью ему приснилось, что он судья на математических соревнованиях крыс (да, в наш век цифровых технологий даже крысы не остаются за гранью научно-технического прогресса). Соревнования проводятся среди [latex]N[/latex] команд по [latex]K[/latex] крыс в каждой. Соревнования проводятся в [latex]К[/latex] раундов, в каждом из которых представитель команды называет число. Побеждает та команда, у которой произведение всех чисел наибольшее. Почему крысы не называют каждый раз максимально возможное число? На то они и крысы, что в отличии от Мурзика, обделены интеллектом. Но и Мурзик понимает, что сам подсчитать результат не сможет из-за недостачи математических способностей и поэтому просит вашей помощи.

Входные данные

Первая строка содержит два целых числа [latex]N[/latex] и [latex]K[/latex] [latex](0 < N ≤ 20, 0 < K ≤ 100000)[/latex]. Следующие [latex]K[/latex] строк содержат по N чисел, которые называют представители команд. Причем крысы, как представители образованного вида, знают только 32-битовые знаковые числа.

Выходные данные

Номер команды, выигравшей соревнования. Если несколько команд имеют одинаковые результаты, то побеждает та, у которой больше номер.

Тесты

# Входные данные Выходные данные
1 3 3
20 10 30
15 20 20
30 30 20
3
2 3 3
20 -10 -30
15 25 20
30 -30 20
1
1 3 3
0 -10 -30
15 25 20
30 -30 20
2

Код программы

Решение задачи

Произведение результатов крыс может быть очень большим числом. Поэтому можно сравнивать их по знаку, если же по знаку они равны, то можно сравнивать не сами числа, а логарифмы от чисел. Создаем структуру, которая реализует эту идею.

Ссылки

Ссылка на e-olymp
Ссылка на ideone

e-olymp 1482. Умножение матриц

Задача

Пусть даны две прямоугольные матрицы $A$ и $B$ размерности $m \times n$ и $n \times q$ соответственно:
$$A = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{bmatrix} \; , \; B = \begin{bmatrix} b_{11} & b_{12} & \ldots & b_{1q} \\ b_{21} & b_{22} & \ldots & b_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \ldots & b_{nq} \end{bmatrix} .$$
Тогда матрица $C$ размерностью $m \times q$ называется их произведением:
$$C = \begin{bmatrix} c_{11} & c_{12} & \ldots & c_{1q} \\ c_{21} & c_{22} & \ldots & c_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \ldots & c_{mq} \end{bmatrix} ,$$
где: $$c_{i,j} = \sum_{r=1}^{n} a_{i,r}b_{r,j} \; \left(i = 1, 2, \ldots m; j = 1, 2, \ldots q\right).$$
Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором; в этом случае говорят, что форма матриц согласована.

Задано две матрицы $A$ и $B$. Найти их произведение.

Входные данные

В первой строке задано $2$ натуральных числа $n_a$ и $m_a$ – размерность матрицы $A$. В последующих $n_a$ строках задано по $m_a$ чисел – элементы $a_{ij}$ матрицы $A$. В $\left(n_a + 2\right)$-й строке задано $2$ натуральных числа $n_b$ и $m_b$ – размерность матрицы $B$. В последующих $n_b$ строках задано по $m_b$ чисел – элементы $b_{ij}$ матрицы $B$. Размерность матриц не превышает $100 \times 100$, все элементы матриц целые числа, не превышающие по модулю $100$.

Выходные данные

В первой строке вывести размерность итоговой матрицы $C$: $n_с$ и $m_c$. В последующих $n_с$ строках вывести через пробел по $m_c$ чисел – соответствующие элементы $c_{ij}$ матрицы $C$. Если умножать матрицы нельзя — в первой и единственной строке вывести число $\; -1$.

Тесты

Входные данные Выходные данные
2 3
1 3 4
5 -2 3
3 3
1 3 2
2 1 3
0 -1 1
2 3
7 2 15
1 10 7
3 3
1 5 3
2 6 1
7 -1 -3
3 2
3 6
-1 1
3 1
3 2
7 14
3 19
13 38
4 4
4 8 -18 16
3 7 14 -42
2 1 1 7
4 9 5 -2
4 4
1 0 0 0
0 1 0 0
0 0 1 0
4 4
4 8 -18 16
3 7 14 -42
2 1 1 7
4 9 5 -2
3 3
5 7 -1
8 9 3
0 -6 17
2 3
7 -15 1
8 8 2
-1
2 3
57 -49 31
89 11 -37
3 1
19
-19
0
2 1
2014
1482

Код программы

 

Решение

Для начала, считываем данные матрицы $A$ из входного потока и записываем их в двумерный динамический массив. Далее, получив данные о размерности второй матрицы, мы можем определить, выполнима ли операция умножения, и если нет, то прервать выполнение программы. Если операция умножения данных матриц выполнима, то считываем и записываем данные второй матрицы, после чего, по приведённой выше формуле вычисляем произведение матриц $C = A \times B.$ Наконец, выводим полученную матрицу $C.$

Ссылки

Условие задачи на e-olymp
Код задачи на ideone
Умножение матриц на Wikipedia

e-olymp 2669. Поворот

Поворот

Дан массив [latex]n[/latex] × [latex]m[/latex]. Требуется повернуть его по часовой стрелке на [latex]90[/latex] градусов.

Входные данные

В первой строке даны натуральные числа [latex]n[/latex] и [latex]m[/latex] [latex](1 ≤ n, m ≤ 50)[/latex]. На следующих [latex]n[/latex] строках записано по [latex]m[/latex] неотрицательных чисел, не превышающих [latex]109[/latex] — сам массив.

Выходные данные

Выведите перевернутый массив в формате входных данных.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 2 2

1 2

3 4

2 2

3 1

4 2

2 3 3

1 2 3

4 5 6

7 8 9

3 3

4 7 1

8 5 2

9 6 3

3 3 4

4 5 7 8

3 6 8 7

2 2 4 5

4 3

2 3 4

2 6 5

4 8 7

5 7 8

4 1 2

5 4

2 1

5

4

5 1 1

2

1 1

2

 

Решение задачи:

Алгоритм решения данной задачи состоит в том, чтоб при выводе матрицы, начать выводить ее элементы не по строкам, а по столбцам, снизу вверх, начиная с первого столбца (левого нижнего угла матрицы).

e-olymp 2671. Сапер

Задача

Дан список мин. Требуется составить поле для игры в сапер.

Входные данные

Даны числа $N$ и $M$ (целые, положительные, не превышают $32$) — количество строк и столбцов в поле соответственно, далее число $W$ (целое, неотрицательное, не больше $100$) — количество мин на поле, далее следует $W$ пар чисел, координаты мины на поле (первое число — строка, второе число — столбец).

Выходные данные

Требуется вывести на экран поле. Формат вывода указан в примере.

Тесты

 

Входные данные Выходные данные
3 2
2
1 1
2 2
* 2
2 *
1 1
2 2
0
0 0
0 0
10 10
5
1 1
3 3
5 5
7 7
9 9
* 1 0 0 0 0 0 0 0 0
1 2 1 1 0 0 0 0 0 0
0 1 * 1 0 0 0 0 0 0
0 1 1 2 1 1 0 0 0 0
0 0 0 1 * 1 0 0 0 0
0 0 0 1 1 2 1 1 0 0
0 0 0 0 0 1 * 1 0 0
0 0 0 0 0 1 1 2 1 1
0 0 0 0 0 0 0 1 * 1
0 0 0 0 0 0 0 1 1 1
1 1
1
1 1
*
32 32
10
1 1
2 2
4 4
4 3
3 4
5 5
27 28
30 30
22 31
32 32
* 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 * 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 4 * 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 * * 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 * 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 * 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 * 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 * 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 *

Решение задачи

Для хранения координат мин будем использовать двумерный массив. Все ячейки массива, используемые под поле, и их окружающие следует заблаговременно обнулить, чтобы получить точное количество мин при подсчете.

Ссылки

Условие задачи на сайте e-olymp

код задачи на ideone

e-olymp 2261. Защита королевства

Защита королевства

Теодор реализует новую стратегию игры «Оборона Царства». На каждом уровне игрок защищает королевство, которое представлено прямоугольной сеткой ячеек. В некоторых клетках игрок строит арбалетные башни. Башня защищает все клетки в той же строке и том же столбце. Никакие две башни не находятся на одной строке или столбце.

Штрафом положения является количество клеток в крупнейшем незащищенном прямоугольнике. Например, положение, показанное на рисунке имеет штраф [latex]12[/latex].
Помогите Теодору написать программу, вычисляющую штраф в заданной позиции.

Входные данные:

Первая строка содержит три целых числа: [latex]w[/latex] — ширина сетки, [latex]h[/latex] — высота сетки и [latex]n[/latex] — количество арбалетных башен [latex](1 ≤ w, h ≤ 40000; 0 ≤ n ≤ min(w, h))[/latex].

Каждая из следующих n строк содержит два целых числа [latex]x_i[/latex] и [latex] y_i[/latex] — координаты клетки с башней [latex](1 ≤ x_i ≤ w; 1 ≤ y_i ≤ h)[/latex].

Выходные данные:

Вывести одно число — количество клеток в наибольшем прямоугольнике, не защищенном башнями.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 10 10 3

1 1

2 2

3 3

49
2 15 15 4

4 4

5 5

7 8

13 15

30
3 30 30 5

13 14

16 27

29 30

5 5

10 15

132
4 100 100 2

1 1

100 100

9604
5 3 3 3

1 1

2 2

3 3

0

 

Код программы:

Решение задачи:

Алгоритм решения задачи состоит в том, чтобы найти максимальное количество незащищенных клеток между соседними башнями по координатам абсцисс и ординат (которые будет на [latex]1[/latex] меньше чем сама разность координат) и перемножить полученные числа тем самым найдя площадь образованного ими прямоугольника.

Для решения данной задачи нужно создать два массива в [latex]x[/latex] и [latex]y[/latex] (в первом будут находится [latex]x_i[/latex] координаты, а во втором [latex]y_i[/latex]) размера на [latex]2[/latex] больше чем количество заданных башен, так как нужно учитывать рамки поля, для чего достаточно добавить две башни c координатами ([latex]0[/latex];[latex]0[/latex]) и ([latex]x[/latex] [latex]max+1[/latex]; [latex]y[/latex] [latex]max+1[/latex]).  Далее нужно отсортировать эти массивы и найти максимальную разность между соседними элементами ([latex]a[/latex] — максимальная разность между [latex]x_i[/latex] элементами, [latex]b[/latex] — максимальная разность между [latex]y_i[/latex]). Далее, по формуле ([latex]a-1[/latex])*([latex]b-1[/latex]) находим площадь самого большого незащищенного прямоугольника, которая равна количеству клеток в нем, что и является ответом задачи.

 

e-olymp 7447. Обрезка строки

Задача с сайта e-olymp.com.

Условие задачи

Имеется строка [latex]s[/latex]. Разрешается взять два любых одинаковых соседних символа и удалить их из строки. Эту операцию можно производить пока имеется возможность. Сначала Вы можете выбрать любое количество символов в строке и удалить их. Определить наименьшее количество символов, которое Вы можете удалить сначала так, чтобы затем выполняя разрешенную операцию, получить пустую строку.

Входные данные

Содержит строку [latex]s[/latex] ([latex]1 ≤[/latex] длина[latex]\left( s \right) [/latex] [latex]≤ 100)[/latex].

Выходные данные

Вывести наименьшее количество символов, которое следует удалить сначала.

Тесты

Входные данные Выходные данные
1 abbcddka 2
2 ABBA 0
3 abcde 5
4 abbac 1

Код на C++

Код на Java

Описание

Идея решения состоит в том, чтобы разбить строку на меньшие по длине подстроки и найти ответ на задачу для каждой из них. Для хранения строки используется переменная s, а ответы на подзадачи содержатся в двумерном массиве целых чисел answers. В answers[i][j] находится ответ для подстроки с i-ого по j-й символ включительно. В функции main сначала вводится строка s. Далее ширина и глубина массива answers устанавливаются равными длине s. После этого он заполняется начальными значениями. Значение [latex]-1[/latex] означает, что ответ для этой ячейки ещё не был найден. Однако очевидно, что если строка состоит ровно из одного символа, согласно условию задачи, его придётся удалить, значит, главную диагональ можно сразу заполнить единицами. Затем происходит вызов рекурсивной функции calculate, принимающей индексы левой и правой границ целевой подстроки. Первый раз она вызывается для всей строки от первого до последнего символа. Работает эта функция следующим образом: если индекс левой границы отрезка больше индекса правой, что, в случае данной задачи, не имеет смысла, она возвращает ноль. Иначе она возвращает ответ на задачу для данной подстроки, а если этого не делалось ранее, то предварительно находит его. Происходит это так: сначала значение ответа устанавливается равным длине подстроки, поскольку в худшем случае необходимо будет удалить её всю целиком. Если символы на концах подстроки одинаковые, они, как сказано в условии, будут удалены в дальнейшем, потому нужно рассматривать минимум из текущего значения ответа и ответа для подстроки без крайних символов. Однако может оказаться, что выгоднее удалить символы из каких-то двух меньших подстрок, потому далее в цикле рассматриваются все возможные комбинации двух подстрок, из которых можно составить конкатенацией текущую. В итоге получаем ответ на задачу для данной подстроки.

Код на ideone.com. (C++)
Код на ideone.com. (Java)
Засчитанное решение на e-olymp.