e-olymp 4717. Дележ яблок — 2

Задача

$n$ школьников делят $k$ яблок поровну, не делящийся остаток остаётся в корзинке. Сколько яблок останется в корзинке?

Входные данные

Два положительных целых числа $n$ и $k$, не больших 1500.

Выходные данные

Вывести количество яблок, которое останется в корзинке.

Тесты

Входные данные Выходные данные
200 300 100
1500 1500 0
30 600 0
12 15 3
152 1432 64

Код программы

Решение

Ответом является остаток от деления $k$ на $n$.

e-olymp

ideone

e-olymp 8522. Делимость

Задача

Заданы два натуральных числа $a$ и $b$. Проверьте, делится ли $a$ на $b$.

Входные данные: Два натуральных числа $a$ и $b$ $(1 \le a, b \le 10^9)$

Выходные данные: Если $a$ не делится на $b$ нацело, вывести в одной строке частное и остаток от деления $a$ на $b$. Иначе вывести "Divisible".

Тесты

$a$ $b$ Вывод программы
15 3 Divisible
12 7 1 5
15 23 0 15
1000000000 889879 1123 665883

Continue reading

e-olymp 939. Квадрат суммы

Задача взята с сайта e-olimp.

Задача

Найти квадрат суммы цифр двузначного натурального числа.

Входные данные

Одно натуральное двузначное число.

Выходные данные

Квадрат суммы цифр заданного числа.

Тесты

#

   Входный данные

Выходные данные

1

23

25

2

25

49

3

36

81

4

60

36

5

99

324

Код

Решение

Разобьем двузначное натуральное число [latex] n [/latex]  на два числа, содержащих соответственно его первую цифру  ( [latex] c_1 [/latex] ) и вторую — ( [latex] c_2 [/latex] ), где  [latex] c_2 = n \mod 10[/latex], в то время как [latex] c_1 = \frac {n} {10} [/latex]. Теперь, чтобы получить квадрат суммы цифр двузначного натурального числа, сложим два эти числа и умножим еще раз на их сумму [latex] (c_2 + c_1) \cdot (c_2 + c_1) [/latex].

Ссылки

ideone

e-olymp