D2547. Cумма ряда

Задача

Доказать сходимость и найти сумму ряда [latex]\sum \limits_{n=1}^{\infty}\left(\frac{1}{2^n}+\frac{1}{3^n}\right)[/latex].

Код на C++

Код на Java

Решение

Разобьем ряд на два: [latex]\frac{1}{2^n}[/latex] и [latex]\frac{1}{3^n}[/latex]. Оба ряда являются бесконечно убывающими геометрическими прогрессиями, следовательно они сходятся и сумма этих рядов тоже будет сходиться. Знаменателем первой прогрессии([latex]s_1[/latex]) будет [latex]\frac{1}{2}[/latex], а знаменателем второй([latex]s_2[/latex]) — [latex]\frac{1}{3}[/latex]. Тогда по формуле суммы бесконечно убывающей прогрессии: [latex]s=\frac{b_1}{1-q}[/latex], где [latex]b_1[/latex] первый член прогрессии, а [latex]q[/latex] — ее знаменатель. Затем суммируем суммы прогрессий и получаем ответ.

Ответ

[latex]\sum \limits_{n=1}^{\infty}\left(\frac{1}{2^n}+\frac{1}{3^n}\right)=\frac{3}{2}=1.5[/latex].

Ссылки

1.Решение на C++

2.Решение на Java

3.Решение на WolframAlpha