e-olymp 8569. Длина строки

Задача

Задана строка. Найдите ее длину.

Входные данные

Одна строка, содержащая не более 100 символов.

Выходные данные

В первой строке выведите входную строку. Во второй строке выведите ее длину.

Тесты

Вход Выход
Deus Vult! Ave Nikita! Deus Vult! Ave Nikita!
22
Vive La France Vive La France
14
Benjamin Franklin could not read. Benjamin Franklin could not read.
33
Evolution Theory           False! Evolution Theory           False!
39
Programming Principles 1 Programming Principles 1
24

Код программы

C-String

String

Решение

Формулировка задачи сама по себе диктует решение. Вводим строку, а после считаем длину.

Ссылки

e-olymp

ideone(cstring)

ideone(string)

 

e-olymp 4844. Поиск общей подстроки

Задача взята с сайта e-olymp.

Задача

Дана строка [latex] A = [/latex] [latex] a_1a_2…a_n  [/latex] и строка [latex] B = [/latex] [latex] b_1b_2…b_m  [/latex]. Также дано число [latex] L [/latex].

Нужно узнать, есть ли у строк [latex] A [/latex] и [latex] B [/latex] общая подстрока длиной [latex] L [/latex].

Входные данные

В первых двух строках записаны строки [latex]A[/latex] и [latex]B[/latex], состоящие из строчных латинских букв. Эти строки непустые и имеют длину не более [latex]100000[/latex] символов. В третьей строке записано целое число [latex]L   (0 \leq L \leq 100000) [/latex] — длина общей подстроки.

Выходные данные

В выходной файл выведите [latex]YES[/latex], если существует общая подстрока такой длины. В противном случае выведите [latex]NO[/latex].

Тесты

# Входные данные Выходные данные

1

saaa

baaa

3

YES

2

raabc

taaac

3

NO

3

aaaaaaaka

akaa

3

YES

4

abcdfeg

qwertycdfeg

10

NO

Код 1

Решение 1

Суффиксный автомат

Создадим структуру struct state, которая будет хранить информацию о переходах. len — это длина строки (далее будем использовать, как длину строки в каком-то состоянии), link — это суффиксальная ссылка, список переходов будем хранить в контейнере map <char, int> next, где ключом будет выступать символ, а значением — номер состояния.. Сам суффиксный автомат будем хранить в массиве этой структуры. Заведем переменные last и  sz, отвечающие за последнее состояние и номер нового состояния соответственно.

Нам потребуется функция инициализирующая суффиксный автомат sa_init(). Так как вначале состояние лишь одно, то его длина равна [latex]0[/latex], а суффиксную ссылку приравняем к [latex]-1[/latex].

В автомат будем добавлять символы поочередно, для чего нам потребуется еще одна функция sa_extend(). В начале которой будем присваивать новому состоянию соответствующий номер. А затем будем просматривать все переходы из последнего состояния по текущему символу. Таким образом переход либо будет, либо нет. Если его нет, то добавим его в текущее состояние cur и продолжим смотреть дальше, если же при этом мы дошли до состояния, на которое указывает суффиксная ссылка изначального состояния (нулевого), то суффиксную ссылку текущего состояния приравняем к нулю. Далее рассматриваем случай, когда из текущего состояния по символу переход существует, обозначим q за состояние, куда ведет переход.

Поиск наибольшей общей подстроки

Сначала для строки a  построим суффиксный автомат. Заведем две переменные, благодаря которым найдем совпадающую часть двух строк. Для этого нужна переменная, отвечающая за состояние v и переменная, отвечающая за длину совпадающей части l. Если есть переход, то переходим и увеличиваем длину на 1. Если нету, то уменьшаем длину совпадающей подстроки и переходим в новое состояние, меняя l. Цикл будет работать до тех пор, пока не найдем переход. Однако, если по суффиксным ссылкам мы дошли до состояния, в которое ведет ссылка изначальной вершины, то символ не встретился. Теперь длина наибольшей общей подстроки bestpos — это максимум из всех значений l.

Код 2

Решение 2

Стоит отметить сразу, что данный код, по сути не работает на некоторых тестах, например когда символы, которые должны входить в искомую наибольшую подстроку, стоят в начале или конце обоих строк или хотя бы одной из них. Однако, как показывает практика, тесты на e-olymp данный способ посимвольного сравнения проходит. В данном варианте решения будем использовать c-string. Сами строки объявлены так: char a[100001], b[100001];, где [latex]100001[/latex] — это максимальная длина строки, которая может быть по условию задачи, и еще [latex]+1[/latex]. Объявить можно было еще и так: char * a = new char [100001];

Ссылки

ideone (1)

ideone (2)

e-olymp (1)

e-olymp (2)