Mif 17.16

Молоканов Юрий
Молоканов Юрий

Latest posts by Молоканов Юрий (see all)

Условие

Принадлежит ли точка [latex](x, y)[/latex] фигуре на рисунке?

grph

В условии не оговаривается ни принадлежность граничных точек фигуре, ни формат записи координат точки. В своем решении я предполагаю, что граничные точки фигуре принадлежат, а значения координат могут иметь дробную часть.

Тестирование

Входные данные Выходные данные
1 0 0 Yes
2 -6 0 Yes
3 5.0 -2.0 Yes
4 -3.33 -5 No
5 0.12345 0.54321 No

Код

Решение

В основе заданной фигуры лежит круг с радиусом [latex]6[/latex] и центром в начале системы координат [latex](0, 0)[/latex], из которого исключена первая четверть. Таким образом, нам нужно удостовериться, что положение заданной точки одновременно удовлетворяет следующим условиям:

  • точка расположена в пределах круга, то есть сумма квадратов координат [latex]x^2+y^2[/latex] меньше или равна квадрату радиуса [latex]6^2=36[/latex];
  • хотя бы одна из координат точки [latex](x, y)[/latex] не превышает значения [latex]0[/latex] (другими словами, точка не лежит в первой четверти).

Если оба условия соблюдены, точка принадлежит фигуре. В противном же случае — нет. Такую проверку и последующий вывод ответа можно записать с помощью единственной тернарной операции:

Ссылки

Код программы на Ideone.com;

Уравнение окружности;

Список задач на ветвления.

ML19

Задача. Известна длина окружности. Найти площадь круга, ограниченного этой окружностью.

Тесты

Длина окружности Точность  Результат работы программы
0 3 Невозможно выполнить для вырожденной окружности
-1 8 Ошибка ввода данных
34 -5 Ошибка ввода данных
25 18 Вывод с заданной точностью невозможен. Максимально возможная точность 13
25 13 49.7359197162173
83 5 548.20920
113.42 3 1 023.692
12 345 678 3 Вывод с заданной точностью невозможен. Максимально возможная точность 1
12 345 678 1 12 128 861 224 697.9
1 000 000 000 0 Число содержит больше 15 значащих цифр. Точный вывод невозможен

Алгоритм

Перед нами была поставлена задача вычислить площадь круга при условии, что известна длина окружности. Так как в условии не оговорена точность вычислений, выводить результат будем с количеством знаков после запятой, которое задано пользователем.

Для удобства преобразуем известные нам формулы:

[latex]L = 2 \pi \cdot R[/latex]   [latex]S = \pi \cdot R^2 [/latex]  [latex] \longrightarrow[/latex]  [latex]R= \frac{L}{2\pi}[/latex]  [latex]\longrightarrow[/latex]  [latex]S = \frac{L^2}{4\pi}[/latex];

Воспользовавшись данной формулой находим искомую величину. Однако реализуя вывод с заданной точностью, требуется проверить сможет ли используемый нами тип данных double его обеспечить. Принимая во внимание факт, что данный тип хранит не более чем [latex]15[/latex] значащих десятичных цифр осуществляем следующую последовательность действий:

  1. Находим значение переменной possibleAccuracy как разность между максимально возможным количеством значащих цифр (maxAccuracy = [latex]15[/latex]) и имеющемся в данном числе .
  2. Отрицательное значение переменной possibleAccuracy сигнализирует о том, что найденная площадь круга превышает [latex] 10^{15} [/latex]. Следовательно, выводим предупреждение о том, что точный подсчет невозможен даже с нулевой точностью после запятой.
  3. При условии, что запрашиваемая точность превышает максимальную, выводим уведомление и значение максимальной точности.
  4. При ложности  пункта 2 и 3, используя манипулятор setprecision, выводим нужное количество знаков.

Код программы:

 

Код программы

Ю2.7

Фесенко Катерина Володимирівна
Фесенко Катерина Володимирівна

Latest posts by Фесенко Катерина Володимирівна (see all)

Задача.

Треугольник и круги.

Лежит ли заданный  на плоскости треугольник АВС в области пересечения заданных кругов:

[latex](x-a1)^2+(y-b1)^2<r1^2[/latex] , и [latex](x-a2)^2+(y-b2)^2<r2^2[/latex]  ?
Ссылка на программу на С++: http://ideone.com/NYTAWN

Код программы на Java:

Ссылка на программу на Java:http: //ideone.com/QZ7RB1

Решение:

Поскольку все фигуры выпуклые достаточно проверить вершины треугольника. Подставляем координаты всех трёх вершин в оба неравенства. Если все условия удовлетворены, то лежит. Если хоть одно условие не выполняется, то не лежит.

Тест

a1 b1 r1 a2 b2 r2 ax bx cx ay by cy Принадлежит?
1 2 3 3 4 5 6 7 8 6 7 4 нет
1 2 15 3 4 12 6 7 8 6 7 4 да
7 5 10 4 6 16 6 7 3 5 6 7 да
7 5 5 4 6 3 6 7 3 5 6 7 нет

 

Ю2.11

Задача жестянщика. Можно ли из круглой заготовки радиусом  [latex]r[/latex] вырезать две прямоугольные пластинки с размерами  [latex] a[/latex] × [latex] b[/latex] и [latex] c[/latex] × [latex]d[/latex]?

1.6 3 0 3 0 We can
1.6 3 1 3 1 We can’t
  2  3 1 3 1 We can
  2  5 1 4 1 We can’t
 

Рассмотрим как выглядит прямоугольник в круге.

Безымянный

Можно заметить, что [latex] h=d1[/latex] (длина до центра окружности) — это катет прямоугольного треугольника, значит его можно найти по теореме Пифагора , зная радиус круга [latex] R[/latex]  и катит [latex] r[/latex] (в нашем случае [latex] a/2[/latex]) [latex] h=\sqrt{R^2-r^2}[/latex]). Вычитая из полученного [latex] h=d1[/latex]  ширину [latex] b[/latex] мы получим  сколько он места занимает при данной длине и ширине относительно центра круга. (Если у нас  [latex] b<d1[/latex], то для второго прямоугольника у нас будет больше места) Тоже самое мы проделываем и для второго прямоугольника и получаем наше [latex] h2=d2[/latex]. Дальше размещаем наши прямоугольники параллельно друг другу и смотрим, хватает ли места второму прямоугольнику места с учетом его ширины (Если по ширине второй прямоугольник не превышает оставшегося места) [latex]d<d2+(d1-b)[/latex].

 

Реализация на Java:

 

Ссылка на код программы.