e-olymp 2807. Кубики — 3

Задача

Дома у Витека было [latex]2[/latex] одинаковых набора кубиков из английских букв, но во время очередной уборки один из кубиков затерялся. Помогите Витеку определить, какой же из кубиков отсутствует в одном из наборов.

Входные данные

В первой строке задано количество найденных Витеком кубиков [latex]n (1 ≤ n ≤ 10^5)[/latex], а во второй строке [latex]n[/latex] символов, изображённых на каждом из кубиков.

Выходные данные

Выведите букву, изображённую на потерявшемся кубике, либо сообщение [latex] «Ok»[/latex], если Витек ошибся и ни один из кубиков не потерялся.

Тесты

# Входные данные Выходные данные
1 5 abcac b
2 8 ryirhiyh Ok
3 3 AVA V
4 6 DjkjDk Ok
5 7 LnCsCnL s

Код программы

Решение задачи

Для того, чтобы решить задачу, мы проверяем четное ли количество кубиков, найденных Витеком. Если условие выполняется, то выводим на экран сообщение с текстом [latex] «Ok»[/latex]. Если нет, то рассматриваем второй случай. Создаем массив, в котором будем хранить количество кубиков для каждой буквы. Обнуляем ячейки массива, в которых будут храниться данные. Далее мы будем считывать символы в соответствии с их числовыми кодами. После прочтения входного потока, найдем элемент массива с нечетным числом вхождений и выведем его на экран.

Ссылки

Ссылка на e-olymp

Ссылка на ideone

e-olymp 4496. Приключение Незнайки и его друзей

Задача с сайта e-olymp.com.

Условие задачи

Все мы помним историю о том, как Незнайка со своими друзьями летали на воздушном шаре путешествовать. Но не все знают, что не все человечки влезли в шар, так как у него была ограниченная грузоподъемность.

В этой задаче Вам необходимо узнать, сколько же человечков улетело путешествовать. Известно, что посадка в шар не является оптимальной, а именно: человечки садятся в шар в той очереди, в которой они стоят, как только кому-то из них не хватает места, он и все оставшиеся в очереди разворачиваются и уходят домой.

Входные данные

В первой строке содержится количество человечков [latex]n (1 ≤ n ≤ { 10 }^{ 6 })[/latex] в цветочном городе. Во второй строке заданы веса каждого из человечков в том порядке, в котором они будут садиться в шар. Все веса натуральные числа и не превышают [latex]{ 10 }^{ 9 }[/latex]. Далее следует количество запросов [latex]m (1 ≤ m ≤ { 10 }^{ 5 })[/latex]. Каждый запрос представляет собой одну строку. Если первое число в строке равно единице, то далее следует еще одно число [latex]v (1 ≤ v ≤ { 10 }^{ 9 })[/latex] – грузоподъемность воздушного шара. Если же оно равно двум, то далее следует два числа [latex]x (1 ≤ x ≤ n)[/latex] и [latex]y (1 ≤ y ≤ { 10 }^{ 9 })[/latex] — это значит, что вес человечка, стоящего на позиции [latex]x[/latex], теперь равен [latex]y[/latex].

Выходные данные

Для каждого запроса с номером один выведите в отдельной строке количество человечков, поместившихся в шар.

Тесты

Входные данные Выходные данные
1 5
1 2 3 4 5
5
1 7
1 3
2 1 5
1 7
1 3
3
2
2
0
2 2
1 2
3
1 4
2 1 10
1 4
2
0
3 2
999999999 1000000000
4
1 999999999
2 1 1000000000
1 999999999
1 1000000000
1
0
1

Код на C++

Код на Java

Описание

В данной задаче требуется эффективно выполнять две операции: изменять значение одного из элементов массива и находить, сколько человечков поместится в шар при заданной грузоподъёмности. Это было реализовано при помощи структуры segment_tree. В функции main сначала вводится значение n и заполняется массив весов человечков weights, после чего по нему выполняется построение дерева отрезков tr. В его вершинах хранятся частичные суммы элементов массива. Да и в целом функции для построения и выполнения запроса модификации у него такие же, как и у обычного дерева отрезков для нахождения суммы на отрезке. Для удобства в массиве weights и в самом дереве используются элементы с первого по [latex]n[/latex]-й, а не с нулевого по [latex]\left( n-1 \right) [/latex]-й. Далее в ходе работы функции main в цикле выполняется обработка запросов. Сначала вводится тип запроса type. Если запрос второго типа, вводятся позиция человечка x, его новый вес y и вызывается метод update, пересчитывающий значения суммы в вершинах, на которые влияет это изменение. Иначе вводится грузоподъемность воздушного шара v и вызывается метод find_numb_of_p, который находит количество человечков, поместившихся в шар. Работает он следующим образом: если выполняется условие tree_l == tree_r, значит, рассматриваемый отрезок состоит из одного элемента, и функция возвращает [latex]1[/latex], если человечек может поместиться в шар, и [latex]0[/latex], если он слишком тяжёлый. Если отрезок больше, вычисляется индекс элемента, находящегося посередине tree_m. Далее, если сумма весов человечков в левом поддереве tree[v*2] больше, чем грузоподъёмность шара, то никто из правого поддерева уже не поместится, и искать следует только в левом поддереве. Иначе в шар следует посадить всех человечков из левого поддерева (их количество равно tree_m - tree_l + 1) и посмотреть, сколько поместится человечков из правого поддерева. При этом необходимо от максимально допустимого веса отнять вес человечков из левого поддерева, уже сидящих в шаре ( max_w-tree[v*2]).

Код на ideone.com. (C++)
Засчитанное решение на e-olymp.com. (C++)
Код на ideone.com. (Java)
Засчитанное решение на e-olymp.com. (Java)
При решении задачи был использован материал с сайта e-maxx.ru.

A302. Количество различных цифр числа в его десятичной записи

Задача

Дано натуральное число [latex]N[/latex]. Сколько различных цифр встречается в его десятичной записи?

Входные данные

Натуральное число [latex]N[/latex].

Выходные данные

Количество различных цифр [latex]sum[/latex].

Тесты

Входные данные Выходные данные
[latex]N[/latex] [latex]sum[/latex]
12345678900987654321 sum:10
302 sum:3

Код программы с использованием deque

 

Решение

Создадим дэк [latex]folder[/latex] в котором будем хранить различные цифры десятичной записи. Добавляем первую цифру числа [latex]N[/latex] в дэк и делим [latex]N[/latex] на [latex]10[/latex]. Следующие цифры мы будем добавлять после проверки на отсутствие таких же в [latex]folder[/latex], если цифры совпадают заканчиваем цикл. В конце выводим размер [latex]folder[/latex] который и является [latex]sum[/latex].

Код программы с использованием массива

Решение

Создадим массив [latex]folder[/latex] в котором будем хранить кол-во встреч для различных цифр десятичной записи в соответствующих позициях массива. Увеличиваем на один значения соответствующей позиции массива и делим [latex]N[/latex] на [latex]10[/latex]. Для определения [latex]sum[/latex] делаем цикл и проверяем ненулевые значения массива [latex]folder[/latex].

Ссылки

Ideone через deque;
Ideone через массив;
Условие задачи (стр. 126).

Душевая кабина

Разбор задачи F с 1/8 ACM ICPC по украинскому региону 25 марта 2017.

Задача

Степан приобрел душевую кабину, которую решил установить в дачном домике. Дачный домик представляет собой прямоугольник [latex]N \times M[/latex], разбитый на одинарные квадратики. Степан знает, что душевая кабина занимает ровно две клетки с общей стороной. Также Степану известно, что некоторые клетки дома заняты разными вещами. Помогите Степану узнать сколькими способами он может разместить душевую кабину в дачном домике.

 

Ввод

В первом ряду входных данных находятся два целых числа  [latex] N,M(1<=N,M<=1000)[/latex] — размеры дачного домика Степана. Каждый из следующих [latex] N[/latex] рядов содержит по  [latex] M[/latex] символов — описание дачного домика Степана. Символ «#» означает, что соответствующая клетка уже чем-то занята, а символ «.» — что она свободна и может стать одной из двух, занятых душевой кабиной.

Вывод

Одно число — количество способов расположить душевую кабину в дачном домике.

Тесты

Код

Решение

Считываем символы в массив . Размер такого массива всегда будет [latex]n \times m[/latex]. Зная это, заводим цикл, в котором проверяем наличие точки(‘.’). Затем проверяем первое условие: если следующий символ тоже точка и если мы не перешли на новую строку, увеличиваем счетчик. Зная количество символов в каждой строке, проверяем символ «под» точкой и если они совпадают опять же увеличиваем счетчик.

А290

Задача. Даны действительные числа [latex]x_{1},\ldots,x_{n}[/latex], [latex]y_{1},\ldots,y_{n}[/latex]. Получить [latex]x’_{1},\ldots,x’_{n}[/latex],[latex]y’_{1},\ldots,y’_{n}[/latex], преобразовав для получения [latex]x’_{i},y’_{i}[/latex] члены [latex]x_{i},y_{i}[/latex] по правилу: если они оба отрицательны, то каждый из них увеличить на 0.5; если отрицательно только одно число, то отрицательное число заменить его квадратом; если оба числа неотрицательны, то каждое из них заменить на среднее арифметическое исходных значений.

Тесты

n [latex]x_{1},\ldots,x_{n}[/latex] [latex]y_{1},\ldots,y_{n}[/latex] [latex]x’_{1},\ldots,x’_{n}[/latex][latex]y’_{1},\ldots,y’_{n}[/latex] Комментарий
4 1 4 -3 8

3 -2 -4 2

2 4 -2.5 5

2 4 -3.5 5

Пройдено
5 0 -0.5 4 -9 0.35

0 -0.5 11 0.247 1.650

0 0 7.5 81 1

0 0 7.5 0.247 1

Пройдено
3 0 3 -0.14942

-3 0 793

0 1.5 0.0223263

9 1.5 793

Пройдено

Реализация (массив структур)

Алгоритм решения (массив структур)
Для выполнения данной задачи, воспользуемся массивом структур. Каждый [latex]i[/latex]-ый элемент такого массива заполняем двумя действительными числами [latex]x_{i}[/latex] и [latex]y_{i}[/latex]. После этого мы выполняем проверку и преобразование этих чисел по заданным в условии правилам. Затем их выводим.

Реализация (класс vector)

Алгоритм решения (класс vector)
Данный способ реализации помогает решить задачу преобразования чисел [latex]x_{1},\ldots,x_{n}[/latex], [latex]y_{1},\ldots, y_{n}[/latex] для неизвестного значения [latex]n[/latex] — количества элементов [latex]x_{i}[/latex] и [latex]y_{i}[/latex]. Их количество будет зависить от количества введенных элементов. Программа считывает элементы [latex]x_{i}[/latex] и [latex]y_{i}[/latex] поочередно, т.е. [latex]x_{1}\rightarrow y_{1}\rightarrow x_{2} \rightarrow y_{2} \rightarrow\ldots\rightarrow x_{n}\rightarrow y_{n}[/latex]. В остальном алгоритм такой же как с массивом структур.

Ссылка на код (массив структур)
Ссылка на код (класс vector)

e-olymp 2955. Персистентый массив

Условие

Задача взята отсюда.

Дан массив (вернее, первая, начальная его версия). Нужно уметь отвечать на два запроса:

  • [latex]a_i[j] = x[/latex] — создать из [latex]i[/latex]-ой версии новую, в которой [latex]j[/latex]-ый элемент равен [latex]x[/latex], а остальные элементы такие же, как в [latex]i[/latex]-ой версии.
  • [latex]get[/latex] [latex]a_i[j][/latex] — сказать, чему равен [latex]j[/latex]-ый элемент в [latex]i[/latex]-ой версии.

Входные данные

Количество чисел в массиве [latex]n[/latex] [latex](1 \leq n \leq 10^5)[/latex] и [latex]n[/latex] элементов массива. Далее количество запросов [latex]m[/latex] [latex](1 \leq m \leq 10^5)[/latex] и [latex]m[/latex] запросов. Формат описания запросов можно посмотреть в примере. Если уже существует [latex]k[/latex] версий, новая версия получает номер [latex]k + 1[/latex]. И исходные, и новые элементы массива — целые числа от [latex]0[/latex] до [latex]10^9[/latex]. Элементы в массиве нумеруются числами от [latex]1[/latex] до [latex]n[/latex].

Выходные данные

На каждый запрос типа [latex]get[/latex] вывести соответствующий элемент нужного массива.

Тесты

Входные данные выходные данные
1 6
1 2 3 4 5 6
11
create 1 6 10
create 2 5 8
create 1 5 30
get 1 6
get 1 5
get 2 6
get 2 5
get 3 6
get 3 5
get 4 6
get 4 5
6
5
10
5
10
8
6
30
2 2
42 2048
17
create 1 1 1
create 2 2 1
create 3 2 5
create 3 1 4
create 5 2 6
get 1 1
get 1 2
get 2 1
get 2 2
get 3 1
get 3 2
get 4 1
get 4 2
get 5 1
get 5 2
get 6 1
get 6 2
42
2048
1
2048
1
1
1
5
4
1
4
6

Код

Решение

Для решения задачи воспользуемся так называемым Персистентным Деревом Отрезков — т.е. деревом, «помнящим» историю своих изменений. Дерево будем хранить не с помощью массива а на указателях — используя структуру типа «узел».

(Тут [latex]lchild[/latex] и [latex]rchild[/latex] — ссылки на левый и правый поддеревья соответственно, а [latex]val[/latex] — значение, хранящееся в узле.)

Замечание: тут и далее под левым подотрезком отрезка [latex][l, l + 1, \ldots, m, m + 1, \ldots, r — 1, r][/latex], [latex]m = \lfloor\frac{l + r}{2}\rfloor[/latex] подразумевается отрезок [latex][l, \ldots, m][/latex] а под правым — [latex][m + 1, \ldots, r][/latex].

Заведем вектор-хранилище корней дерева [latex]versions[/latex] (об этом позднее). Для начала занесем туда 1 элемент — корень изначального дерева, и построим на нем дерево из элементов массива. Вопрос в том, какую информацию хранить в вершинах дерева? Оказывается, достаточно хранить в листьях элементы массива, а остальные узлы заполнять ни чем не надо — исходя из условия, запросы будут только к конкретным элементам массива. Рекурсивная процедура построения дерева стандартна, отличается только технической реализацией (вместо номеров вершин передаем ссылки на необходимые нам узлы) — рекурсивно создаем у текущего узла [latex]lchild[/latex] и [latex]rchild[/latex] и вызываем функцию построения для них, пока длина отрезка, за который они отвечают, не станет равна единице. Тогда присваиваем полю [latex]val[/latex] этого узла значение соотв. элемента массива.

Например, для массива {[latex]1, 2, 3, 4, 5, 6[/latex]} в результате построения мы получим следующую структуру (где на самом деле значения хранятся только на отрезках длины [latex]1[/latex], для остальных узлов подотрезки массива, отвечающие им, только подразумеваются).
graph1
Теперь разберемся, как эффективно создавать новые версии массива. Пусть у нас уже есть [latex]k[/latex] версий массива и мы хотим создать из [latex]i[/latex]-й [latex](k+1)[/latex]-ю. Для начала добавим в хранилище новый узел-корень, отвечающий данной версии.

Теперь рассуждаем так: допустим, элемент, который надо поменять, находиться в правом подотрезке (для левого, рассуждения будут симметричны). Левые подотрезки идентичны, тогда просто присваиваем [latex]lchild[/latex] нового узла ссылку на [latex]lchild[/latex] исходного. Правые будут отличаться. Тогда создаем у нового узла [latex]rchild[/latex], и проводим те же размышления относительного правого подотрезка, [latex]rchild[/latex]-ов исходного и нового узлов, повторяя это до тех пор, пока мы не придем в лист дерева, тогда просто присвоим этому новому узлу требуемое значение. Получаем несложный рекурсивный алгоритм функции void add(Node* to, Node* from, int l, int r, int npos, int nv);

Для наглядности, рассмотрим пример с тем же массивом. Пусть сперва нас просят выполнить create 1 6 42 — создать из первой версии новую, где шестой элемент равен [latex]42[/latex], а затем create 2 4 667 — создать новую уже из второй, где [latex]4[/latex]-й элемент равен [latex]667[/latex]. Вот, что мы получим в результате (черный цвет — первая версия, красный — вторая, синий — третья):

graph2

Рассмотрим, как получилась вторая версия. Создаем корень {[latex]1, 2, 3, 4, 5, 42[/latex]}. Необходимый нам элемент в правом подотрезке. Тогда [latex]lchild[/latex] нового корня будет ссылаться на [latex]lchild[/latex] исходного, а [latex]rchild[/latex] {[latex]4, 5, 42[/latex]}. Мы создаем. Аналогично поступаем с {[latex]4, 5, 42[/latex]} относительно {[latex]4, 5, 6[/latex]}. Левое поддерево {[latex]4, 5[/latex]} — общее, создаем правое поддерево {[latex]42[/latex]} и завершаем алгоритм. Для получения третьей версии можно провести аналогичные рассуждения, но уже беря в качестве исходного дерева вторую версию.

Так как на каждом этапе отрезок делится пополам, то очевидно, что как и в стандартной реализации ДО, асимптотика этой функции будет [latex]O(\log{n})[/latex], а при создании новой версии будет создано не более чем [latex]\lceil\log_2{n}\rceil[/latex] вершин, т.е. алгоритм является достаточно эффективным как в плане времени, так и расходуемой памяти.

Осталось реализовать функцию int get(Node* node, int l, int r, int pos); Она реализуется стандартно: спускаемся по необходимой версии дерева (из нужного узла-корня в [latex]storage[/latex]), в левое или правое поддерево, пока не дойдем до необходимой нам вершины (это будет отрезок единичной длины), далее возвращаем содержимое [latex]val[/latex] этого узла. Реализация облегчается еще и тем, что запрашивают элемент — т.е. отрезок единичной длины, и не надо рассматривать случай, когда необходимый отрезок лежит частично в левом, а частично в правом поддереве.

Таким образом, мы получили структуру, выполняющую поставленную задачу с эффективной асимптотикой по времени и памяти. В главной функции просто считываем изначальный массив, заводим вектор, заносим в него первый узел и строим из него дерево по считанному массиву. Затем в цикле в зависимости от запроса вызываем необходимую функцию.

Ссылки

Засчитанное решение на e-olymp.

Рабочий код на Ideone.

Замечание

Легко заметить, что в функции int get(Node* node, int l, int r, int pos); можно очень просто избавиться от рекурсии:

Но, судя по результатам, это в принципе не влияет на скорость работы программы.