e-olymp 8530. Печать матрицы

Задача

Задана матрица $n \times n$ — назовем ее $[1 \ldots n] \times [1 \ldots n]$ массивом. Для заданных $r$ и $c$ следует вывести $[1 \ldots r] \times [1 \ldots c]$ массив ($r$ строк и $c$ столбцов исходного массива).

Входные данные

Первая строка содержит число $n \space (1 \leq n \leq 100)$. Следующие строки содержат матрицу $n \times n$. Последняя строка содержит два числа $r$ и $c \space (1 \leq r, c \leq n)$. Все числа в матрице не превышают по модулю $100$.

Выходные данные

Выведите матрицу $r \times c$.

Тесты

Входные данные Выходные данные
4
1 2 3 4
5 6 7 8
9 1 2 3
4 5 6 7
3 2
1 2
5 6
9 1
5
18 25 34 44 -43
54 65 75 85 -32
95 15 25 35 -3
-4 15 -6 37 0
44 43 23 3 -12
4 3
18 25 34
54 65 75
95 15 25
-4 15 -6
6
30 -10 30 -69 -84 75
-3 -39 60 15 75 -74
36 68 35 23 25 -44
16 42 83 15 59 -18
71 43 35 -81 -38 51
37 -49 55 26 6 33
4 5
30 -10 30 -69 -84
-3 -39 60 15 75
36 68 35 23 25
16 42 83 15 59

Код программы

Решение

Для того, чтобы вывести матрицу на экран, нам нужно запустить $2$ цикла, один из которых будет вложен в предыдущий:

  • первый цикл ($14$ строка кода) будет отвечать за количество выводимых строк матрицы — по условию, нужно вывести первые $r$ строк;
  • второй цикл ($15$ строка кода) будет отвечать за количество выводимых столбцов матрицы — по условию, нужно вывести первые $c$ столбцов.

Ссылки

Условие задачи на e-olymp
Код решения на Ideone

e-olymp 1484. Серебрянная матрица

Задача

Матрицу будем называть серебрянной, если она удовлетворяет следующим условиям:

Размеры матрицы [latex]n\times n[/latex].
Все элементы матрицы лежат во множестве [latex]S = [/latex]{[latex] 1, 2, 3, \ldots, 2n-1[/latex]}.
Для каждого целого числа [latex]i \left(1 ≤ i ≤ n\right),[/latex] все элементы [latex]i[/latex]-ой строки и [latex]i[/latex]-го столбца образуют множество {[latex] 1, 2, 3, \ldots, 2n-1[/latex]}.
Например, следующая матрица размера [latex]4×4[/latex] является серебряной:

1 2 5 6
3 1 7 5
4 6 1 2
7 4 3 1

Доказано, что серебряная матрица размером [latex]2^K\times 2^K[/latex] всегда существует. Вам следует построить серебряную матрицу [latex]2^K\times 2^K[/latex].

Входные данные

Единственное число [latex]K \left(1 ≤ K ≤ 9\right).[/latex]

Выходные данные

Вывести серебряную матрицу размером [latex]2^K×2^K[/latex]. Для вывода матрицы [latex]2^K\times 2^K[/latex], следует вывести [latex]2^K[/latex] строки, каждая из которых содержит [latex]2^K[/latex] целых чисел.

Тесты

# Входные данные Выходные данные
1 2 3 1 7 5
4 6 1 2
7 4 3 1
2 1 1 2
3 1
3 3 1 2 5 6 9 10 13 14
3 1 7 5 11 9 15 13
4 6 1 2 12 14 9 10
7 4 3 1 15 12 11 9
8 10 13 14 1 2 5 6
11 8 15 13 3 1 7 5
12 14 8 10 4 6 1 2
15 12 11 8 7 4 3 1

Код программы

Решение задачи

Доказано, что матрица гарантировано существует. Напишем частный случай когда матрица имеет степень 1. Затем рекурсивно будем заполнять матрицу такими числами которых гарантировано нет ни в строке, ни в столбце. Например, для случая [latex]k = 1[/latex] подбираем вручную матрицу удовлетворяющую всем условиям. В противном же случае спускаемся к случаю [latex]k = 1[/latex] и затем наращиваем недостающие ряды подходящими для нас числами. То есть находим промежуток from и с помощью него заполняем одинаковыми значениями диагонали матрицы. Затем идем по незаполненным полям и заполняем новыми числами, которые еще не встречались.

Ссылки

Ссылка на e-olymp
Ссылка на ideone

e-olymp 2371. Черный квадрат

Условие

Вдохновленный шедевром Казимира Малевича «Черный квадрат», Петр Палевич решил создать собственную версию картины. Он приготовил полотно в виде прямоугольной сетки с $m \times n$ белыми квадратами — $m$ строк по $n$ ячеек каждая.

Петр покрасил некоторые клетки в черный цвет так, что черные ячейки сформировали квадрат размером $s \times s$ ячеек. Но на следующий день Петр разочаровался в своем творении и уничтожил его, разрезав полотно горизонтальными полосами размера $1 \times n$, после чего сжег их в камине.

На следующее утро Петр передумал и решил восстановить картину. Он попытался найти ее останки в камине, и, к счастью, одну из полос, а именно $k$-ую сверху, огонь не тронул.

Теперь Петр задумался, можно ли восстановить картину на основе этой полосы. Помогите ему сделать это.

Входные данные

Первая строка содержит четыре целых числа: $m$, $n$, $s$ и $k$ $ \left( 1 \leqslant m, n \leqslant 5000, 1 \leqslant s \leqslant \min \left( m, n \right), 1 \leqslant k \leqslant m \right) $.

Вторая строка содержит $n$ символов и описывает $k$-ую строку картины, ‘.’ означает белую клетку, ‘*’ означает черную клетку.

Выходные данные

Если изображение может быть однозначно восстановлено, то следует вывести «Unique». Если существует несколько вариантов восстановления картины, то вывести «Ambiguous». Если ни одной соответствующей картины не существует, вывести «Impossible».

Тесты

Ввод Вывод
$3$ $4$ $2$ $3$
..**
Unique
$4$ $4$ $2$ $3$
*.*.
Impossible
$3$ $5$ $2$ $2$
.**.
Ambiguous
$2$ $8$ $1$ $2$
……*.
Unique

Код

String

C-string

Решение

Основная сложность задачи заключается в аккуратном рассмотрении всех возможных вариантов. После прочтения строки символов, которую представляет собой вытащенная из огня полоска, исследуем ее на количество подряд идущих символов ‘*’. Если последовательностей из звездочек в одной строке несколько, то никакие добавленные полоски не смогут сделать из нее квадрат, и тогда решений нет. Иначе дальнейшее решение делится на два случая:

  1. Спасенная из огня полоска не содержит звездочек. Тогда мы проверяем, может ли поместиться квадрат из звездочек хотя бы в одну из двух частей, на которые эта полоска делит картину. Если да, проверяем, однозначно ли определяем этот квадрат, или же имеется несколько вариантов его возможного расположения в них.
  2. Спасенная из огня полоска содержит звездочки. Тогда, если количество звездочек не совпадает с длиной стороны квадрата, то построить его невозможно, а иначе проверяем, однозначно ли определяем этот квадрат. Здесь необходимо аккуратно рассмотреть все «особенные» случаи, такие как квадрат, состоящий из одной звездочки, а также первая и последняя полоски картины. Очевидно, что в этих случаях расположение квадрата определяется единственным образом.

Если сравнивать, что выгоднее использовать в данной задаче для задания спасённой из огня полоски — строку или массив символов, — то использование строки способствует немного более быстрому решению задачи, чем массив символов; объём используемой памяти при этом не изменяется.

Ссылки

Условие на e-olymp.com
Код с использованием string на ideone.com
Код с использованием c-string на ideone.com

e-olymp 2667. Змейка

Задача

Напишите программу, которая выводит элемент из строки [latex]x[/latex] и столбца [latex]y[/latex] матрицы размера [latex]n × m[/latex], которая заполнена змейкой:

Входные данные

Даны натуральные числа [latex]n[/latex], [latex]m[/latex], [latex]x[/latex], [latex]y[/latex] [latex](1 ≤ x ≤ n ≤ 50, 1 ≤ y ≤ m ≤ 50)[/latex]. Здесь [latex]n[/latex] — количество строк матрицы, [latex]m[/latex] — количество столбцов матрицы, [latex]x[/latex] и [latex]y[/latex] — номера строки и столбца искомого элемента.

Выходные данные

Вывести элемент из строки [latex]x[/latex] и столбца [latex]y[/latex].

Тесты

Входные данные Выходные данные
[latex]5 \; 2 \; 3 \; 1[/latex] [latex]4[/latex]
[latex]6 \; 3 \; 4 \; 3[/latex] [latex]9[/latex]
[latex]10 \; 5 \; 10 \; 2[/latex] [latex]48[/latex]

Код программы

Решение задачи

Читаем входные данные и объявляем массив $n$ на $m$, $num = 0$ — число элемента в этом массиве, далее будем заполнять его в цикле. Делаем перебор строк, для каждой строки есть число $j$ — номер элемента (в текущей строке), с которого мы записываем числа и число $dir$ — направление, в которое мы эти числа записываем (оно у нас 1 или -1). Если строка четная, то начинаем движение слева направо, если нечетная, то справа налево. Далее перебираем каждый элемент строки и записываем ему свой номер. В ответе выводим выбранный элемент.

Ссылки

Условие задачи на e-olymp
Код решения на ideone

ML28. Объём тетраэдра

Задача

Найти объём тетраэдра три стороны которого образованы векторами [latex]\vec {a} = \left( x_a, y_a, z_a \right)[/latex], [latex]\vec {b} = \left( x_b, y_b, z_x \right)[/latex], [latex]\vec {c} = \left( x_c, y_c, z_c \right)[/latex].

Пояснительный рисунок

Пояснительный рисунок к ML28

Входные данные

Координаты векторов [latex]\vec {a}[/latex], [latex]\vec {b}[/latex], [latex]\vec {c}[/latex].

Выходные данные

Объём тетраэдра.

Тесты

Входные данные Выходные данные
[latex]x_a[/latex] [latex]y_a[/latex] [latex]z_a[/latex] [latex]x_b[/latex] [latex]y_b[/latex] [latex]z_b[/latex] [latex]x_c[/latex] [latex]y_c[/latex] [latex]z_c[/latex] [latex]V[/latex]
0 0 1 0 1 0 1 0 0 0.166667
3 6 3 1 3 -2 2 2 2 3
0 0 0 1 3 -2 2 2 2 0

Код программы

Решение задачи

Так как тетраэдр построен на векторах [latex]\vec {a} = \left( x_a, y_a, z_a \right)[/latex], [latex]\vec {b} = \left( x_b, y_b, z_x \right)[/latex], [latex]\vec {c} = \left( x_c, y_c, z_c \right)[/latex], для данной задачи оптимальным решением будет использовать следующие формулы:

  1. [latex]V = \frac {|\Delta|} {6}[/latex], где [latex]V[/latex] — объём тетраэдра, а [latex]\Delta[/latex] — определитель матрицы.
  2. [latex] \Delta =
    \begin{vmatrix}
    x_a & y_a & z_a \\
    x_b & y_b & z_b \\
    x_c & y_c & z_c
    \end{vmatrix}
    = x_a \left(y_b z_c-z_b y_c \right)-x_b \left( y_a z_c-z_a y_c \right)+x_c \left( y_a z_b-z_a y_b \right)
    [/latex].

Итоги:

  • если значение определителя матрицы равно нулю, то либо некоторые из заданных векторов коллинеарны, либо нулевые, либо все они лежат в одной плоскости. Во всех этих случаях тетраэдр не может существовать, и программа выведет [latex]0[/latex];
  • если значение определителя не равно нулю, то программа вычислит объём тетраэдра. В случае, если определитель примет отрицательное значение, программа домножит значение объёма на [latex]-1[/latex], в результате чего оно станет положительным.

Ссылки

А712

Задача

Дана квадратная матрица [latex]A[/latex] порядка [latex]n[/latex]. Получить матрицы [latex]\frac{1}{2}(A+A^{*}) (1)[/latex] и [latex]\frac{1}{2}(A-A^{*}) (2)[/latex].

Тесты:

Ввод Вывод (1) Вывод (2)
3
1 2 3
2 4 6
1 4 8
1 2 2
2 4 5
2 5 8
0 0 1
0 0 1
-1 -1 0

Код:

Ссылка на ideone.

Сначала, вводим размер матрицы и саму матрицу, сразу же транспонируем ее. Теперь каждый элемент обычной матрицы прибавляем к транспонированному и отнимаем от транспонированного в последствии умножая на [latex]\frac{1}{2}[/latex]. Записываем это в две различные матрицы с результатом и выводим их на экран.

Код на Java