e-olymp 5282. Седловые точки

Задача

Задана матрица [latex]K[/latex], содержащая [latex]n[/latex] строк и [latex]m[/latex] столбцов. Седловой точкой этой матрицы назовём элемент, который одновременно является минимумом в своей строке и максимумом в своём столбце.
Найдите количество седловых точек заданной матрицы.
Saddle point

Входные данные

Первая строка содержит целые числа [latex]n[/latex] и [latex]m[/latex]. [latex](1 ≤ n, m ≤ 750)[/latex]. Далее следуют [latex]n[/latex] строк по [latex]m[/latex] чисел в каждой. [latex]j[/latex]-ое число [latex]i[/latex]-ой строки равно [latex]k_{ij}[/latex]. Все [latex]k_{ij}[/latex] по модулю не превосходят [latex]1000[/latex].

Выходные данные

Выведите количество седловых точек.

Тесты

# Входные данные Выходные данные
1 2 2
0 0
0 0
4
2 3 3
1 2 3
4 3 6
9 5 3
0
3 4 4
1 2 0 0
2 2 4 4
0 0 1 1
3 4 2 1
0
4 2 2
3 2
1 1
1

Код программы

Решение задачи

Для каждой строки, будем осуществлять два прохода. В первом найдем минимальное число, а во втором для каждого минимального числа этой строки будем проверять: является ли это число максимумом в своем столбце. И если «Да», то увеличиваем заранее созданную переменную ( в результате кол-во седловых точек будет число, заложенное в этой переменной ).

Ссылки

Условие задачи на e-olymp.com.

Код решения на ideone.com.

ML30. Объём параллелепипеда

Задача. Найти объём параллелепипеда три стороны которого образованы векторами [latex] \overrightarrow{a}=(a_x,a_y,a_z),[/latex] [latex]\overrightarrow{b}=(b_x,b_y,b_z)[/latex] и [latex]\overrightarrow{c}=(c_x,c_y,c_z).[/latex]

Входные данные: Координаты векторов [latex]\overrightarrow{a},[/latex] [latex] \overrightarrow{b},[/latex] [latex]\overrightarrow{c}. [/latex]

Выходные данные: Объём параллелепипеда.

Тесты

Входные данные Выходные  данные
0 0 1 0 1 0 1 0 0  1
0 0 0 1 0 0 0 0 1  0
1 0 0 0 0 1 0 0 1  0
2 5 3 4 1 0 -2 7 6  18
3 5 1 0 -7 2 6 -4 5  21

Код программы

Решение

Для решения данной задачи можно составить матрицу и вывести из неё формулу для нахождения определителя:
[latex]\triangle = \begin{vmatrix}a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z\end{vmatrix} =[/latex] [latex] a_x \left(b_y c_z+c_y b_z\right)[/latex] [latex]-a_y \left(b_x c_z+c_x b_z\right)+[/latex] [latex]a_z\left(b_x c_y+c_x b_y\right).[/latex]

Модуль определителя матрицы равен объёму параллелепипеда.

Решение на ideone.

ML28. Объём тетраэдра

Задача

Найти объём тетраэдра три стороны которого образованы векторами [latex]\vec {a} = \left( x_a, y_a, z_a \right)[/latex], [latex]\vec {b} = \left( x_b, y_b, z_x \right)[/latex], [latex]\vec {c} = \left( x_c, y_c, z_c \right)[/latex].

Пояснительный рисунок

Пояснительный рисунок к ML28

Входные данные

Координаты векторов [latex]\vec {a}[/latex], [latex]\vec {b}[/latex], [latex]\vec {c}[/latex].

Выходные данные

Объём тетраэдра.

Тесты

Входные данные Выходные данные
[latex]x_a[/latex] [latex]y_a[/latex] [latex]z_a[/latex] [latex]x_b[/latex] [latex]y_b[/latex] [latex]z_b[/latex] [latex]x_c[/latex] [latex]y_c[/latex] [latex]z_c[/latex] [latex]V[/latex]
0 0 1 0 1 0 1 0 0 0.166667
3 6 3 1 3 -2 2 2 2 3
0 0 0 1 3 -2 2 2 2 0

Код программы

Решение задачи

Так как тетраэдр построен на векторах [latex]\vec {a} = \left( x_a, y_a, z_a \right)[/latex], [latex]\vec {b} = \left( x_b, y_b, z_x \right)[/latex], [latex]\vec {c} = \left( x_c, y_c, z_c \right)[/latex], для данной задачи оптимальным решением будет использовать следующие формулы:

  1. [latex]V = \frac {|\Delta|} {6}[/latex], где [latex]V[/latex] — объём тетраэдра, а [latex]\Delta[/latex] — определитель матрицы.
  2. [latex] \Delta =
    \begin{vmatrix}
    x_a & y_a & z_a \\
    x_b & y_b & z_b \\
    x_c & y_c & z_c
    \end{vmatrix}
    = x_a \left(y_b z_c-z_b y_c \right)-x_b \left( y_a z_c-z_a y_c \right)+x_c \left( y_a z_b-z_a y_b \right)
    [/latex].

Итоги:

  • если значение определителя матрицы равно нулю, то либо некоторые из заданных векторов коллинеарны, либо нулевые, либо все они лежат в одной плоскости. Во всех этих случаях тетраэдр не может существовать, и программа выведет [latex]0[/latex];
  • если значение определителя не равно нулю, то программа вычислит объём тетраэдра. В случае, если определитель примет отрицательное значение, программа домножит значение объёма на [latex]-1[/latex], в результате чего оно станет положительным.

Ссылки

А406

Задача

С помощью [latex]x_{ij}, i=1,2; j=1,\ldots,n.[/latex] — действительной матрицы на плоскости задано n точек так, что [latex]x_{1j}, x_{2j}[/latex] — координаты [latex]j[/latex] — точки. Точки попарно соединены отрезками. Найти длину наибольшего отрезка.

Тест

n Матрица [latex]x_{ij}, i=1,2.[/latex] Длина наибольшего отрезка  Комментарий
3  

2 8 4

9 1 5

10 Пройдено
4  

6 14 2 1

9 3 8 0

13.3417 Пройдено
5  

1 8 4 3 7

2 9 5 0 11

11.7047 Пройдено

Код программы:

Ход решения:

  1. Вводим матрицу построчно (не очень удобно).
  2. Находим длину наибольшего отрезка.
    С помощью вложенных циклов мы находим длины всех отрезков по формуле
    [latex] AB=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}, A(x_{1},y_{1}), B(x_{2},y_{2}). [/latex]
  3. По алгоритму нахождения максимума находим длину наибольшего отрезка.
  4. Выводим матрицу.
  5. Выводим длину наибольшего отрезка.
    Ссылка на код

Ю4.12

Задача: Все ненулевые элементы матрицы [latex]D(k,l)[/latex] расположить в начале массива [latex]E(k \times l)[/latex] и подсчитать их количество.

K L Матрица D Ненулевые элементы матрицы E Количество ненулевых элементов
2 3 2 7 0
1 4 9
 2 7 1 4 9  5
3 4 6 7 4 2
9 0 1 3
0 8 0 19
 6 7 4 2 9 1 3 8 19  9
4 2  8 9
0 1
5 2
7 26
 8 9 1 5 2 7 26 8

Заполняем матрицу с клавиатуры посредством циклов.
Выводим ненулевые элементы.
Выводим их количество.
Выводим матрицу D.

Ссылка на код

А705

Задача:
Даны квадратные матрицы [latex]A[/latex] и [latex]B[/latex] порядка [latex]n[/latex]. Получить матрицу [latex]A(B-E)+C[/latex], где [latex]E[/latex] — единичная матрица порядка [latex]n[/latex], а элементы матрицы [latex]C[/latex] вычисляются по формуле:[latex]C_{ij}=\frac{1}{i+j}\;\;\;\;(i,j=1,2,\ldots,n)[/latex].

Тесты
К сожалению я не разместила здесь тесты к задаче.

Решение
Реализуем хранение матрицы в виде двумерного массива. Операции сложения и вычитания матриц выполняются поэлементно. Умножение требует наличия у левого сомножителя такого же числа столбцов, как и число строк у правого сомножителя. Поэлементно умножаем каждую строку первой матрицы на каждый столбец второй накапливая сумму значений в элементах результирующей матрицы.

Код C++

Код C++ на Ideone: A705

Код Java

Код Java на Ideone: A705

Тесты:

№ теста Размерность матрицы n Матрица A Матрица В Ответ
1 2 3 4
2 1
2 1
9 0
  39.50  -0.67

11.33  1.25

2 4 5 5 5 5
0 0 8 7
2 3 4 7
8 6 1 2
5 7 3 4
9 8 3 4
2 3 4 5
6 6 6 6
  105.50  115.33  75.25  90.20

58.33  66.25  66.20  75.17

85.25  89.20  69.17  75.14

100.20  113.17  57.14  71.12

3 3 0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

 0.5 0.33 0.25

0.33 0.25 0.20

0.25 0.20 0.17