e-olymp 1060. Линии

Задача взята с сайта e-olymp.com.

Условие задачи

В таблице из [latex]n[/latex] строк и [latex]n[/latex] столбцов некоторые клетки заняты шариками, другие свободны. Выбран шарик, который нужно переместить, и место, куда его переместить. Выбранный шарик за один шаг перемещается в соседнюю по горизонтали или вертикали свободную клетку. Требуется выяснить, возможно ли переместить шарик из начальной клетки в заданную, и если возможно, то найти путь из наименьшего количества шагов.

Входные данные

В первой строке находится число [latex]n \left (2\leq n\leq 40 \right )[/latex], в каждой из следующих [latex]n[/latex] строк — по [latex]n[/latex] символов. Символом точки обозначена свободная клетка, латинской заглавной [latex]O[/latex] — шарик, [latex]@[/latex] — исходное положение шарика, который должен двигаться, латинской заглавной [latex]X[/latex] — конечное положение шарика.

Выходные данные

В первой строке выводится [latex]Y[/latex], если движение возможно, или [latex]N[/latex], если нет. Если движение возможно далее следует [latex]n[/latex] строк по [latex]n[/latex] символов — как и на вводе, но [latex]X[/latex], а также все точки на пути заменяются плюсами.

Тесты

Входные данные Выходные данные

Код программы

ideone.com

Засчитанное решение на e-olymp.com.

Решение

Для решения данной задачи можно использовать волновой алгоритм.  Считывая исходный массив с лабиринтом находим индексы начального и конечного положения шарика. Затем, начиная с начальной позиции проверяем проходимы ли соседние с ней клетки . Если клетка проходима и не была посещена ранее, помещаем ее в очередь и присваиваем соответствующей клетке массива, в котором хранится путь, значение на единицу большее, чем в начальной клетке. Так каждая помеченная клетка становится начальной, порождая шаги в соседние клетки, пока очередь не опустеет.

Затем, если клетка с конечным положением шарика достижима, необходимо восстановить кратчайший путь. Двигаясь от конечной позиции в начальную, на каждом шаге выбираем клетку значение которой на единицу меньше текущего положения, при этом символы в соответствующих клетках исходного лабиринта заменяем на символ [latex]+.[/latex]

e-olymp 2401. Обход в ширину

Андрей Яроцкий
Андрей Яроцкий

Latest posts by Андрей Яроцкий (see all)

Задача 2401

Условие

Дан неориентированный граф. В нём необходимо найти расстояние от одной заданной вершины до другой.

Входные данные

В первой строке содержится три натуральных числа [latex]n, s[/latex] и [latex]f (1 [/latex] [latex]\le[/latex] [latex]s, f[/latex] [latex]\le[/latex] [latex]n[/latex] [latex]\le[/latex] [latex]100)[/latex] — количество вершин в графе и номера начальной и конечной вершин соответственно. Далее в n строках задана матрица смежности графа. Если значение в [latex]j[/latex]-м элементе [latex]i[/latex]-й строки равно [latex]1[/latex], то в графе есть направленное ребро из вершины [latex]i[/latex] в вершину [latex]j[/latex].

Выходные данные

Вывести минимальное расстояние от начальной вершины до конечной. Если пути не существует, выведите [latex]0[/latex].

Тесты

Входные данные Выходные данные
1 1 1 1
1
0
2 3 1 3
0 1 0
1 0 0
0 0 0
0
3 4 4 3

0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

2
4 5 1 4
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0
2

 

Решение

Для решения данной задачи необходимо использовать алгоритм «Поиск  в ширину». Суть данного алгоритма полагает в том, что все вершины, начиная с начальной, помещаются в структуру очередь [latex](queue)[/latex] в порядке удаления от начальной вершины. По мере заполнения очереди, каждой вершине приписывается величина расстояния [latex](dist)[/latex] от начальной вершины, после чего соответствующая вершина помечается как пройденная [latex](used)[/latex] и её расстояние от начальной вершины более не переписывается даже при повторном просмотре. Таким образом, каждой вершине, для которой существует путь, соединяющий её с начальной вершиной, сопоставляется минимальное расстояние от нее до начальной вершины. Если такого пути не существует, расстояние остается равным нулю. Подробней об этом алгоритме можно прочесть здесь

Ссылки

Код программы на ideone.com

Условие задачи

Решенная задача

e-olymp 982. Связность

Задача. Проверить, является ли заданный неориентированный граф связным, то есть что из любой вершины можно по рёбрам этого графа попасть в любую другую.

Входные данные

В первой строке заданы количество вершин [latex]n[/latex] и ребер [latex]m[/latex] в графе соответственно [latex](1 \leq n \leq 100, 1 \leq m \leq 10000)[/latex]. Каждая из следующих m строк содержит по два числа [latex]u_i[/latex] и [latex]v_i[/latex] [latex](1 \leq u_i, v_i \leq n);[/latex]  каждая такая строка означает, что в графе существует ребро между вершинами [latex]u_i[/latex] и [latex]v_i[/latex].

Выходные данные

Выведите «YES», если граф является связным и «NO» в противном случае.

Тесты

Тесты, взятые с e-olymp.com

Test Input Output
1 3 2
1 2
3 2
YES
2 3 1
1 3
NO

Мои тесты

Test Input Output
1 4 2
1 2
3 4
NO
2 4 5
1 2
2 1
2 4
2 4
4 2
NO
3 5 4
1 2
5 1
3 5
4 3
YES

Код программы

Алгоритм

Чтобы установить, является ли граф связным, я использовала удобный для этого алгоритм поиска в ширину. Он заключается в следующем: начиная с какой-то вершины, мы поочередно просматриваем все вершины, соседние с ней. Каждую посещенную вершину мы помечаем маркером. Затем повторяем этот процесс для каждой из соседних вершин, и так далее. Поиск будет продолжаться, пока мы не обойдем все вершины, которые можно достигнуть из данной. Если после этого в графе осталась хотя бы одна не помеченная вершина, значит из нее нельзя попасть в помеченные, то есть граф не является связным. При этом неважно, с какой вершины мы будем начинать поиск, ведь нам нужно установить сам факт, связный граф или нет.

Код программы

Засчитанное решение на сайте e-olymp.com

e-olymp 2820. Перемещение коня

Янішевська Альона Русланівна
Янішевська Альона Русланівна

Latest posts by Янішевська Альона Русланівна (see all)

Задача с сайта e-olimp №2820Перемещение коня

Ваш друг проводит научные исследования по проблеме Конского Минимального Путешествия (КМП), которая состоит в том, чтобы найти кратчайший замкнутый тур ходов конём, который посещает каждую клетку заданного набора из n клеток на шахматной доске ровно один раз. Он считает, что самая трудная часть задачи состоит в определении наименьшего числа ходов для перемещения коня между двумя заданными клетками и что, как только вы поможете ему решить эту подзадачу, то ему решить всю задачу будет намного легче.

Вы, конечно, знаете, что дело обстоит как раз наоборот. Таким образом, вы в свою очередь решили предложить ему самому написать программу, которая решает «трудную» часть.

Ваша задача состоит в том, чтобы написать программу, которая принимает координаты двух клеток a и b в качестве входных данных, а затем определяет количество ходов конем кратчайшим путём из a в b.

Входные данные

Входные данные будут содержать один или более тестов. Каждый тест состоит из одной строки, содержащей координаты двух клеток, разделенные одним пробелом. Координаты клетки являются двумя символами, первый из которых буква (ah), задающая столбец и второй – цифра (18), задающая строку на шахматной доске.

Выходные данные

Для каждого теста вывести одну строку следующего содержания: «To get from xx to yy takes n knight moves.» (см. пример выходных данных).

Тесты:

Пример входных данных Пример выходных данных
e2 e4 To get from e2 to e4 takes knight 2 moves.
a1 b2 To get from a1 to b2 takes knight 4 moves.
b2 c3 To get from b2 to c3 takes knight 2 moves.
a1 h8 To get from a1 to h8 takes knight 6 moves.
a1 h7 To get from a1 to h7 takes knight 5 moves.
h8 a1 To get from h8 to a1 takes knight 6 moves.
b1 c3 To get from b1 to c3 takes knight 1 moves.
f6 f6 To get from f6 to f6 takes knight 0 moves.

Код программы:

Данную задачу можно решить с помощью алгоритма поиска в ширину. Из начальной клетки мы ищем все возможные ходы пока не попадем в нужную клетку. Чтобы получить длину пути, нужно хранить длины путей до данной клетки в матрице и обновлять ее, по ходу продвижения (если новое значение меньше того, что записано в клетке — записываем его, а если больше — оставляем предыдущее). Длина в начальной клетке — 0, а длина в каждой последующей — 1.

Ссылка на засчитанное решение и код решения на ideone.

e-olymp 1266. CD

Вам предстоит длительное путешествие на автомобиле. К сожалению, у Вас в машине есть только магнитофон, а лучшая музыка записана на компакт дисках. У Вас есть чистая магнитофонная лента с длительностью звучания [latex]N[/latex] минут. Вам нужно выбрать песни для записи на магнитофонную ленту таким образом, чтобы не используемое на ней место было минимально.

Предположения:

  • количество треков на CD не превышает [latex]100[/latex]
  • ни один трек не длится более [latex]N[/latex] минут
  • длина каждого трека выражена целым числом
  • [latex]N[/latex] также целое [latex](0\leq[/latex][latex]N\leq[/latex][latex]200)[/latex]

Программа должна найти максимально возможную длину записи треков на ленту с соблюдением того же порядка треков, что и на CD.

Входные данные

Входные данные содержат несколько строк. В каждой строке сначала задано число [latex]N[/latex], далее количество треков и длительность звучания каждого трека. Все числа разделены пробелами. Например, в первой строке входных данных первым задано [latex]N=5[/latex], далее количество треков [latex]s=3[/latex], первый трек имеет длительность [latex]1[/latex] минуту, второй — [latex]3[/latex] минуты, и последний — [latex]4[/latex] минуты.

Выходные данные

Выведите строку «sum:» и далее продолжительность записи.

Входные данные Выходные данные
5 3 1 3 4
10 4 9 8 4 2
20 4 10 5 7 4
90 8 10 23 1 2 3 4 5 7
45 8 4 10 44 43 12 9 8 2
sum:5
sum:10
sum:19
sum:55
sum:45

Код:

Ссылка на засчитанное решение

Ссылка на ideone

Ссылка на ideone

Алгоритм решения построен на методе динамического программирования.

Возможны два варианта:

  1. Либо трек не попал на диск, следовательно длинна уже записанных треков на диск [latex](d[j][i])[/latex] равна предыдущему числу ранее записанных треков [latex](d[j][i-1])[/latex].
  2. Либо трек попал на диск, а значит [latex]d[j][i][/latex] равно максимуму из суммы ранее записанных треков [latex](d[j][i-1])[/latex] и суммы заданной длинны [latex]arr[i][/latex] c [latex]d[j-arr[i]][i-1]][/latex], где [latex]d[j-arr[i]][i-1]][/latex] равен сумме уже записанных треков при предыдущем элементе массива [latex]arr[i-1][/latex]

e-olymp 4850. Шайтан-машинка

Марченко Філіп Олександрович
Марченко Філіп Олександрович

Latest posts by Марченко Філіп Олександрович (see all)

Шайтан-машинка

Условие

У Ибрагима есть магическая чёрная шайтан-машинка. На ней есть три кнопки и табло. Табло может показывать не более чем четырёхзначные числа. Каждая из кнопок меняет число некоторым образом: первая домножает его на [latex]3[/latex], вторая прибавляет к нему сумму его цифр, а третья вычитает из него [latex]2[/latex]. В случае, если число становится отрицательным или превосходит [latex]9999[/latex], шайтан-машинка ломается.

Ибрагим может нажимать кнопки в любом порядке. Его интересует, как ему получить на табло число [latex]b[/latex] после некоторой последовательности нажатий, если сейчас шайтан-машинка показывает [latex]a[/latex]. Помогите ему найти минимальное необходимое число нажатий.

Входные данные

В одной строке находится два натуральных числа [latex]a[/latex] и [latex]b[/latex] [latex](1\leq{a},b\leq9999)[/latex].

Выходные данные

Вывести минимальное необходимое количество действий.

Задача
Зачтённое решение

Код

Ideone

Код на Java:

 

Решение

Для решения данной задачи я решил использовать алгоритм BFS (поиск в ширину). Обычно, данный алгоритм применяется для поиска пути от одной вершины к другой, причём длина пути должна быть минимальной.

Всю «карту» расположения операций можно представить в виде графа-дерева, где от каждой вершины отходят максимум 3 ребра (в каждой вершине по операции, проделанной со значением вершины, которая находится на уровень выше). Будем рассматривать каждую вершину. Если исходная вершина и есть конечной, то выходим из программы с вердиктом «0». Иначе будем поочерёдно рассматривать все вершины. Заведём массив расстояний, в котором предположим, что расстояние до нужной нам вершины равно 1. С проходом каждой вершины будем подсчитывать расстояние до нужной нам вершины (прибавляя к расстоянию 1), в которую мы рано или поздно попадём.