e-olimp 2864. Табулирование функции

Задача

Напишите программу, которая выводит на экран таблицу значений функции [latex]y = 3\sin\left(x\right) [/latex] на промежутке от [latex]a[/latex] до [latex]b[/latex] включительно с шагом [latex]h[/latex].

Входные данные

В одной строке через пробел заданы три вещественных числа [latex]a[/latex], [latex]b[/latex] и [latex]h[/latex].

Выходные данные

В каждой строке выведите по два числа [latex]x[/latex] и [latex]y[/latex] соответственно, по возрастанию [latex]x[/latex] с тремя десятичными знаками.

Тесты

Входные данные Выходные данные
1 2 0.5 1.000 2.524
1.500 2.992
2.000 2.728
0 0 1 0.000 0.000
20 10 5 10.000 -1.632
15.000 1.951
20.000 2.739
-3 -1 1 -3.000 -0.423
-2.000 -2.728
-1.000 -2.524

Код программы

Решение задачи

Подключим модули cmath, чтобы использовать функцию синус, и iomanip, для установления точности ответа. Далее, с помощью цикла от [latex]a[/latex] до [latex]b[/latex] с шагом [latex]h[/latex] выведем на экран таблицу значений функции на заданном промежутке.

Ссылки

Условие задачи на e-olymp

Код решения

e-olymp 4812. Функция

Задача

Функция [latex]f(x)[/latex] определена следующим образом:
[latex]f\left(x\right)= \sin x + \sqrt{\log_{4}3x}+ \lceil 3e^x \rceil[/latex]
Вычислите значение [latex]f(x)[/latex] для заданного [latex]x[/latex].

Входные данные

Каждая строка содержит действительное значение [latex]x (x ≥ 1)[/latex].

Выходные данные

Для каждого значения x выведите в отдельной строке [latex]f(x)[/latex] с 6 десятичными знаками.

Тесты

Входные данные Выходные данные
1
2.3
2.56
7.123456
10.731685
31.926086
40.762019
3725.231017

Код программы

Решение задачи

График функции

График функции $f\left(x\right) = \sin x + \sqrt{\log_{4}3x}+ \lceil 3e^x \rceil$


Для решения этой задачи я считывал каждое число из потока ввода и передавал значение в функцию, которая возвращало нужное значение, после чего выводил на экран полученное значение с округлением до 6-го знака после запятой. Использовал стандартную библиотеку <cmath>, для вычисления синуса, корня, логарифма, нахождения экспоненты и округления вверх.

Ссылки

  • Задача на сайте e-olymp
  • Код решения в Ideone

A334(б). Сумма в сумме

Условие

Вычислить [latex]\sum\limits _{ i=1 }^{ k }{ \sum\limits _{ j=1 }^{ t }{ \sin { ({ i }^{ 3 }+{ j }^{ 4 }) } } } [/latex] .

Решение

В данной задаче нам необходимо сделать два цикла, а конкретней — цикл в цикле.

Тесты

[latex]k[/latex] [latex]t[/latex] [latex]S[/latex]
1 1 0.9092
10 15 1.4908
20 30 8.8956
60 100 41.9133

Воспользуемся веб-приложением и посчитаем сумму ряда.

Ссылки

Задачник Абрамова
Код на ideone

MLoop 16

Постановка задачи

MLoop16.

Вычислите с точностью [latex]\epsilon[/latex] значение функции [latex]f\left( x \right) = \frac{\sin 2x}{x}[/latex]. При вычислениях допустимо использовать только арифметические операции.

Алгоритм решения

Разложим [latex]g \left( x \right) = \sin x[/latex] по формуле Тейлора с опорной точкой [latex]x_0 = 0[/latex] и остаточным членом в форме Лагранжа:
[latex]g \left( x \right) = P_n \left( x_0 ; x \right) + R_n \left( x_0 ; x \right)[/latex],
[latex]P_n \left( x_0 ; x \right) = g \left( x_0 \right) + \sum_{k = 1}^{n} \frac{g^{\left( k \right)} \left( x_0 \right) }{k!} \left( x — x_0 \right) ^k[/latex],
[latex]R_n \left( x_0 ; x \right) = \frac{g^{\left( n + 1 \right)} \left( \xi \right)}{\left( n + 1 \right) !}\left( x — x_0 \right) ^{n + 1} , x_0 < \xi < x[/latex].

Найдем производные [latex]g \left( x \right)[/latex]:
[latex]g’ \left( x \right) = \cos x = \sin \left( x + \frac{\pi}{2} \right)[/latex],
[latex]g» \left( x \right) = \cos \left( x + \frac{\pi}{2} \right) = \sin \left( x + 2 \frac{\pi}{2} \right)[/latex],
[latex]g»’ \left( x \right) = \cos \left( x + 2 \frac{\pi}{2} \right) = \sin \left( x + 3 \frac{\pi}{2} \right)[/latex],
[latex]\cdots[/latex]

[latex]g^{\left( k \right)} \left( x \right) = \cos \left( x + \left( k — 1 \right) \frac{\pi}{2} \right) = \sin \left( x + k \frac{\pi}{2} \right)[/latex].

Вычислим значение функции и ее производных в точке [latex]x_0[/latex]:
[latex]g \left( x_0 \right) = \sin x_0 = \sin 0 = 0[/latex],
[latex]g’ \left( x_0 \right) = \sin \left( x_0 + \frac{\pi}{2} \right) = \sin \frac{\pi}{2} = 1[/latex],
[latex]g» \left( x_0 \right) = \sin \left( x_0 + 2 \frac{\pi}{2} \right) = \sin \pi = 0[/latex],
[latex]g»’ \left( x_0 \right) = \sin \left( x_0 + 3 \frac{\pi}{2} \right) = \sin \frac{3 \pi}{2} = -1[/latex],
[latex]\cdots[/latex]

[latex]g ^{ \left( 2k — 1 \right) } \left( x_0 \right) = \sin \left( x_0 + \left( 2k — 1 \right) \frac{\pi}{2} \right) = \sin \left( \pi k + \frac{\pi}{2} \right) = \left( -1 \right) ^{k — 1}[/latex],
[latex]g ^{ \left( 2k \right) } \left( x_0 \right) = \sin \left( x_0 + 2k \frac{\pi}{2} \right) = \sin \pi k = 0[/latex].

Тогда
[latex]P_n \left( x_0 ; x \right) = \sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot x^{2k — 1} }{ \left( 2k — 1 \right) ! }[/latex],
[latex]R_n \left( x_0 ; x \right) = \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot x ^{n + 1} }{ \left( n + 1 \right) ! }[/latex],
[latex]g \left( x \right) = \sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot x^{2k — 1} }{ \left( 2k — 1 \right) ! } + \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot x ^{n + 1} }{ \left( n + 1 \right) ! }[/latex],
[latex]f \left( x \right) = \frac{ g \left( 2x \right) }{ x } = \sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot \left( 2x \right) ^{2k — 1} }{ x \cdot \left( 2k — 1 \right) ! } + \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot \left( 2x \right) ^{n + 1} }{ x \cdot \left( n + 1 \right) ! }[/latex].

Осталось найти такое [latex]n \in \mathbb{N}[/latex], чтобы выполнялось неравенство
[latex]\left| \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot \left( 2x \right) ^{n + 1} }{ x \cdot \left( n + 1 \right) ! } \right| \le \left| \frac{ \left( 2x \right) ^ {n + 1} }{ x \left( n + 1 \right) ! } \right| < \epsilon[/latex].

Для ускорения вычислений зададим реккурентную формулу для слагаемых суммы
[latex]\sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot \left( 2x \right) ^{2k — 1} }{ x \cdot \left( 2k — 1 \right) ! }[/latex].
Представим каждое слагаемое суммы в виде
[latex]\alpha_k = \alpha_{k — 1} \cdot b_k = \frac{ \left( -1 \right) ^{k — 1} \cdot \left( 2x \right) ^{2k — 1} }{ x \cdot \left( 2k — 1 \right) ! }[/latex].
Выразим [latex]b_k[/latex]:
[latex]b_k = \frac{ \alpha_k }{ \alpha_{ k — 1 } } = \frac{ \left( -1 \right) ^ {k — 1} \cdot \left( 2x \right) ^ {2k — 1} \cdot x \left( 2 \left( k — 1 \right) — 1 \right) ! }{ x \left( 2k — 1 \right) ! \cdot \left( -1 \right) ^ { \left( k — 1 \right) — 1 } \cdot \left( 2x \right) ^ {2 \left( k — 1 \right) — 1} } = — \frac{4x^2}{\left( 2k — 2 \right) \left( 2k — 1 \right)}[/latex].
Тогда
[latex]\alpha_k = \begin{cases} 2 & k = 1, \\ \alpha_{k-1} \cdot b_k & k > 1. \end{cases}[/latex]

Тесты

Входные данные Выходные данные
[latex]x[/latex] [latex]\epsilon[/latex] [latex]f\left( x \right) = \frac{\sin 2x}{x} + \lambda, \lambda\in\left( -\epsilon;\epsilon \right)[/latex]
[latex]\frac{5\pi}{2}[/latex]  [latex]0[/latex]  [latex]\frac{2}{5\pi}[/latex]
 [latex]\pi[/latex]  [latex]0.01[/latex]  [latex]0[/latex]
 [latex]0[/latex]  [latex]0.1[/latex]  [latex]\emptyset[/latex]

Реализация

ideone: ссылка

MLoop 4

Задача. Вычислите с точностью [latex]\epsilon[/latex] значение функции [latex]f\left( x \right) = \sin x[/latex]. При вычислениях допустимо использовать только арифметические операции.

Код программы

Тесты

Входные данные Входные данные Выходные данные
x e sin(x)
1 0,01 0,841471
3 0,01 0,14112
4 0,001 -0,756802
7 0,0001 0, 656987

Решение

Необходимо использовать формулу Тейлора, а именно ряд Маклорена, чтобы представить функцию

[latex]f(x)[/latex] = [latex]\sin x[/latex]

Эта формула имеет такой вид [latex]\sin x[/latex] = [latex]\sum _ { n=0 }^{ \infty }{ { (-1) }^{ n } } \frac { { x }^{ 2n+1 } }{ (2n+1)! }[/latex].

Подключаем заголовочный файл cmath для использования функции abs(). Построим реккурентную формулу для [latex]x_n[/latex] через  [latex]x_{n-1}[/latex] для [latex]n > 1 \left(x_0=x\right)[/latex]. Для этого найдем отношение последующего члена ряда к предыдущему [latex]k = \frac{x_n}{x_{n-1}} = -\frac{x^2}{2n\cdot(2n + 1)}[/latex].

Используем функцию while, чтобы проверить является ли член ряда  [latex]x_n[/latex] больше [latex]e[/latex].

Ideone.com

 

А57г. Функция

Постановка задачи

Дано действительное число [latex]a[/latex]. Вычислить [latex]f(a)[/latex], если
[latex]f(x) = \begin{cases}0, & x \le 0;\\x^2 — x, & 0 < x \le 1;\\x^2 — \sin(\pi \cdot x^2), & x > 1 \end{cases}[/latex]

Алгоритм решения

Находим промежуток, которому принадлежит [latex]a[/latex]. Если [latex]a \in (-\infty;0][/latex], то [latex]f(a) = 0[/latex], если [latex]a \in (0;1][/latex], то [latex]f(a) = a^2 — a[/latex], в остальных случаях [latex]f(a) = a^2 — \sin(\pi \cdot a ^ 2)[/latex].

График функции:
function

Тесты

Входные данные Выходные данные
0 0
1 0
2 4

Реализация

ideone: ссылка

 

ML 9

Данная задача находится здесь.

Условие:

Определить периметр правильного [latex] m [/latex]-угольника, вписанного в окружность радиуса [latex] R [/latex].

Входные данные:

Количество сторон правильного многоугольника [latex] m [/latex] и радиус [latex] R [/latex] описанной около него окружности.

Выходные данные:

Единственное число — периметр заданного многоугольника.

Тесты:

m R P
1 3 4 20.7846
2 6 5 30
3  8 13  79.5982
4 27 20 125.38

Код программы:

Код на сайте ideone.com можно получить здесь.

Убедиться в корректности формулы с помощью онлайн-калькулятора можно на этом сайте.

Решение:

Для решения данной задачи воспользуемся формулой для нахождения длины стороны правильного многоугольника с помощью радиуса описанной окружности: [latex]a=2\cdot R\cdot\sin{\frac{\pi}{m}}[/latex] , где [latex]R[/latex] — радиус описанной окружности, а [latex]m[/latex] — количество сторон правильного многоугольника. В задаче необходимо найти периметр, т.е. общую длину всех сторон: [latex]P=a\cdot m[/latex] . Таким образом, объединив формулы, получаем конечную формулу для нахождения периметра правильного многоугольника: [latex]P=\left(2\cdot R\cdot\sin{\frac{\pi}{m}}\right)\cdot m[/latex] , значение которой и необходимо вывести.

Источник формул : wikipedia.

 

 

Ю 3.30

Задача 

 Численно убедится в справедливости равенства для заданного значения аргумента [latex]x[/latex] на заданное значение погрешности [latex]\varepsilon[/latex]. Вывести число итераций.

[latex]sinx=[/latex][latex] x-\frac{x^3}{3!}+[/latex][latex]\frac{x^5}{5!}[/latex][latex]-\dots+[/latex][latex](-1)^{n-1}[/latex][latex]\frac{x^{2n-1}}{(2n-1)!}[/latex]

Тест

[latex]x[/latex] Delta Результат(wolframalpha)
0 0 0.001 0
3.14 [latex]\pi[/latex] 0.0001 0.00161324
1.57 [latex]\pi/2[/latex] 0.00001 1
1.05 [latex]\pi/3[/latex] 0.0001 0.86602
2.06 [latex]2\pi/3[/latex] 0.0001 0.869296

Ссылка на программу: http://ideone.com/ykdWnD

Решение

Каждый последующий член ряда рекурсивно выражается через предыдущий.  Суть решения в том, что получая аргумент мы фиксируем левую часть выражения, вычисляя значение синуса от данного аргумента, а затем проверяем сколько слогаемых нам потребуется, чтобы вторая часть отличалась от первой на заданное значение дельта. А ответ показывает значения левой и итоговой правой частей.

 

А136м

Задача.

Даны натуральное число [latex]n[/latex], действительные числа   [latex]a_{1},…,a_{n}[/latex] .

Вычислить: [latex]\sin \left|a_{1}+…+a_{n} \right|[/latex]

Тест

[latex]n[/latex] последовательность результат (wolframalpha)
1 0 0
1 1000 0.82688
1  -100 0.505366
3 -100 1000 -100 0.89397
5 1 2 3 4 5 0.650287

Я показала , что период не [latex]\pi [/latex] , а [latex]2\pi [/latex] . Период  [latex]\pi [/latex]  был бы в случае [latex]\left|\sin a_{1}+…+a_{n} \right|[/latex] , а у нас  [latex]\sin \left|a_{1}+…+a_{n} \right|[/latex] . Вот графики :

6WSmLvYnzY4

zATL68loKls

 

Ссылка на программу: http://ideone.com/ICxfXU

Решение:

Переменной [latex]sum[/latex] присваиваем значение [latex]0[/latex]. Вводим элемент [latex]a[/latex], который мы будем суммировать в цикле до [latex]n[/latex]:

Далее вводим в input соответствующие значения [latex]a[/latex] и получаем ответ.

 

Ю3.32

Задача:

Вычислить [latex]x=2\left(\sin x-\frac{\sin 2x}{2}+\frac{\sin 3x}{3}-\cdots+\left(-1 \right)^{n-1} \frac{\sin nx}{n}\right)[/latex],

[latex]-\pi <x<\pi [/latex].

n x summa Комментарий
3 1 0.867725 Пройден
2 2 2.575397 Пройден
1 5 -1.917849 Пройден

Решение:

Запишем общий вид суммы: [latex]2\sum_{i=0}^{n}{\left(-1 \right)^{n-1}}\frac{\sin ix}{i}[/latex].

Чтобы вычислить сумму запускаем цикл. Перед слагаемыми стоят разные знаки. Что бы вычислить, какой знак будет перед очередным слагаемым используем условный оператор.

Работу программы можно посмотреть тут.

Ю3.33

Задача: В задаче задана функция и её разложение в ряд или произведение. Численно убедится в справедливости равенства, для чего для заданного значения аргумента [latex] x [/latex] вычислить левую его часть и разложение, стоящее в правой части, с заданной погрешностью [latex]\varepsilon\[/latex]. Испытать разложение на сходимость при разных значениях аргумента, оценить скорость сходимости, для чего вывести число итераций [latex] n [/latex]  (слагаемых или сомножателей), необходимых для достижения заданной точности.
[latex]\sin \left(x \right) = x \left(1 — \frac{x^{2}}{\pi^{2}} \right) \left( 1 — \frac{x^{2}}{4\pi^{2}} \right) \ldots \left(1 — \frac{x^{2}}{ \left( n-1 \right)^{2}\pi^{2}} \right)[/latex]

Тесты:

x n-Excel sin — Excel deviation — Excel e — input exact sinus n — program deviation — program
12  22  -1,029367  0.56  0.56  -0.536573  22  0.524789
5  7  -1,346966
 0.54  0.54  -0.958924  7  0.461469
2.5  2  0,771704  -1.15  -1.15  0.598472  2  -0.318384
1  2  0,875915  -1.38  -1.38  0.841471  2  -0.057208
0  2  0  -0.53  -0.53  0  2  0
-1  2  -0,875915  0.3  0.3  -0.841471  2  0.057208
-2.5  6  -0,659746  0.08  0.08  -0.598472  6  0.073087
-5  4  1,700161  -1.62  -1.62  0.958924  4  -1.061024
-12  12  1,755690  -1.63  -1.63  0.536573  12  -1.417062

Код программы:

Код программы на языке Java:

Ссылка:http://ideone.com/nZluY8

Программа состоит из следующих частей:

  1. Определение вспомогательной функции
  2. Рабочие переменные
  3. Определяем лимит числа итераций чтобы избежать бесконечного цикла
  4. Ввод данных — аргумента функции и заданной погрешности
  5. Условие выполнения
  6. Вывод результата

Правильность результата проверялась на калькуляторе. тестирование показало, что правильные значения получаются только при очень большом  n  .  Только начиная с десятков тысяч результат близок к показанию калькулятора.

Данные для проверки подготавливались в Excel ввиду относительно большого количества итераций, необходимых для расчётов. Полученная погрешность с точным значением синуса использовались как входное [latex]e[/latex]. Результирующее количество итераций программы сравнивалось с числом итераций, сделанных в Excel. Ввиду того, что double намного точнее чем значения в Excel, возможны различия в числе итераций ( назначенных ).

Ссылка на ideone.com: http://ideone.com/fork/Wh91nH