Сумма делителей — 2

Задача

Профессор из тридевятого царства решил, что посчитать сумму делителей числа $n$ до $10^{10}$ сможет любой троечник, поэтому усложнил для Кости задачу, дав числа с большим количеством цифр. Но наш герой не хотел сдаваться, уж больно он хотел стать отличником.
Костя очень просит Вас помочь ему в этом деле, ведь он помнит, как успешно Вы справились с предыдущей задачей.

Входные данные

Одно целое число $n \left(1 \leqslant n < 10^{15}\right).$

Выходные данные

Выведите сумму делителей числа $n.$

Тесты

Входные данные Выходные данные
$100000000000031$ $100000000000032$
$10000019$ $10000020$
$400001520001444$ $700002730002667$
$9$ $13$
$304250263527210$ $1281001468723200$
$94083986096100$ $457766517350961$
$1234567898765$ $1517681442816$
$100000000000000$ $249992370597277$
$562949953421312$ $1125899906842623$
$81795$ $161280$
$9999999999999$ $14903272088640$
$997$ $998$
$1325$ $1674$
$2468013$ $3290688$
$951641320$ $2447078400$
$71675429738641$ $71695352830464$
$1100000000033$ $1200000000048$
$6300088$ $11859480$
$98$ $171$
$9102837465$ $15799834440$

Код программы

Решение задачи

Пусть $n$ имеет каноническое разложение $n = p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots p_k^{\alpha_k},$ где $p_1 < p_2 < \ldots <p_k$ — простые делители числа $n$, $\alpha_1, \alpha_2,\ldots, \alpha_k \in \mathbb {N}$. Тогда сумма натуральных делителей числа $n$ равна $\sigma\left(n\right) = \left(1 + p_1 + p_1^2 +\ldots + p_1^{\alpha_1}\right)\cdot\left(1 + p_2 + p_2^2 +\ldots + p_2^{\alpha_2}\right)\cdot\ldots\times$$\times\left(1 + p_k + p_k^2 +\ldots + p_k^{\alpha_k}\right).$
Доказательство.
Рассмотрим произведение:
$\left(1 + p_1 + p_1^2 +\ldots + p_1^{\alpha_1}\right)\cdot\left(1 + p_2 + p_2^2 +\ldots + p_2^{\alpha_2}\right)\cdot\ldots\cdot\left(1 + p_k + p_k^2 +\ldots + p_k^{\alpha_k}\right)$
Если раскрыть скобки, то получим сумму членов ряда:
$p_1^{\beta_1}\cdot p_2^{\beta_2}\cdot\ldots\cdot p_k^{\beta_k},$ где $0\leqslant\beta_m\leqslant\alpha_m \left(m = 1, 2, \ldots, k\right)$
Но такие члены являются делителями $n$, причем каждый делитель входит в сумму только один раз. Поэтому рассмотренное нами произведение равно сумме всех делителей $n,$ т.е. равно $\sigma\left(n\right).$ Итак, $\sigma\left(n\right)$ можно вычислить по нашей формуле. С другой стороны, каждая сумма $1 + p_m + p_m^2+\ldots+p_m^{\alpha_m}$ является суммой геометрической прогрессии с первым членом $1$ и знаменателем $p_m$. Поэтому иначе данную формулу можно переписать так:
$$\sigma\left(n\right) = \frac{p_1^{\alpha_1+1}-1}{p_1-1}\cdot\frac{p_2^{\alpha_2+1}-1}{p_2-1}\cdot\ldots\cdot\frac{p_k^{\alpha_k+1}-1}{p_k-1}.$$
Для того, чтобы не вычислять $p_k^{\alpha_k+1}$, перепишем данную формулу в следующем виде:
$$\sigma\left(n\right) = \left(\frac{p_1^{\alpha_1}-1}{p_1-1}+p_1^{\alpha_1}\right)\cdot\left(\frac{p_2^{\alpha_2}-1}{p_2-1}+p_2^{\alpha_2}\right)\cdot\ldots\cdot\left(\frac{p_k^{\alpha_k}-1}{p_k-1}+p_k^{\alpha_k}\right).$$

Ссылки

Код решения

Сумма делителей

Задача

Жил-был в тридевятом государстве мальчик по имени Костя. Он был старательным учеником и получал исключительно высокие баллы по всем предметам. И вот наш герой очень захотел стать отличником, но ему не хватало нескольких баллов по алгебре. Для того чтобы их набрать, профессор дал Косте следующую задачу:
Найти сумму делителей данного числа $n.$
Костя обратился к Вам как к опытному программисту, который знает алгебру, с просьбой о помощи решить данную задачу.

Входные данные

Одно целое число $n \left(1 \leqslant n < 10^{10}\right).$

Выходные данные

Выведите сумму делителей числа $n.$

Тесты

Входные данные Выходные данные
$12$ $28$
$239$ $240$
$1234$ $1854$
$6$ $12$
$1000000007$ $1000000008$
$44100$ $160797$
$223092870$ $836075520$
$2147483648$ $4294967295$
$678906$ $1471002$
$1111111$ $1116000$
$9876543210$ $27278469036$
$99460729$ $99470703$
$5988$ $14000$
$1$ $1$
$1348781387$ $1617960960$
$135792$ $406224$
$5402250$ $17041284$
$375844500$ $1259767236$
$1000000000$ $2497558338$
$2357947691$ $2593742460$

Код программы

Решение задачи

Пусть $n$ имеет каноническое разложение $n = p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots p_k^{\alpha_k},$ где $p_1 < p_2 < \ldots <p_k$ — простые делители числа $n$, $\alpha_1, \alpha_2,\ldots, \alpha_k \in \mathbb {N}$. Тогда сумма натуральных делителей числа $n$ равна $\sigma\left(n\right) = \left(1 + p_1 + p_1^2 +\ldots + p_1^{\alpha_1}\right)\cdot\left(1 + p_2 + p_2^2 +\ldots + p_2^{\alpha_2}\right)\cdot\ldots\times$$\times\left(1 + p_k + p_k^2 +\ldots + p_k^{\alpha_k}\right).$
Доказательство.
Рассмотрим произведение:
$\left(1 + p_1 + p_1^2 +\ldots + p_1^{\alpha_1}\right)\cdot\left(1 + p_2 + p_2^2 +\ldots + p_2^{\alpha_2}\right)\cdot\ldots\cdot\left(1 + p_k + p_k^2 +\ldots + p_k^{\alpha_k}\right)$
Если раскрыть скобки, то получим сумму членов ряда:
$p_1^{\beta_1}\cdot p_2^{\beta_2}\cdot\ldots\cdot p_k^{\beta_k},$ где $0\leqslant\beta_m\leqslant\alpha_m \left(m = 1, 2, \ldots, k\right)$
Но такие члены являются делителями $n$, причем каждый делитель входит в сумму только один раз. Поэтому рассмотренное нами произведение равно сумме всех делителей $n,$ т.е. равно $\sigma\left(n\right).$ Итак, $\sigma\left(n\right)$ можно вычислить по нашей формуле. С другой стороны, каждая сумма $1 + p_m + p_m^2+\ldots+p_m^{\alpha_m}$ является суммой геометрической прогрессии с первым членом $1$ и знаменателем $p_m$. Поэтому иначе данную формулу можно переписать так:
$$\sigma\left(n\right) = \frac{p_1^{\alpha_1+1}-1}{p_1-1}\cdot\frac{p_2^{\alpha_2+1}-1}{p_2-1}\cdot\ldots\cdot\frac{p_k^{\alpha_k+1}-1}{p_k-1}.$$

Ссылки

Код решения

e-olymp 1128. Проблема Лонги

Задача

Лонги хорошо разбирается в математике, он любит задумываться над трудными математическими задачами, которые могут быть решены при помощи некоторых изящных алгоритмов. И вот такая задачка возникла:
Дано целое число [latex]n[/latex] [latex](1 < n < 231)[/latex], Вы должны вычислить [latex]\sum\limits_{i=1}^n gcd [/latex] для всех [latex] 1 ≤ i ≤ n[/latex].
"О, я знаю, я знаю!" — воскликнул Лонги! А знаете ли Вы? Пожалуйста, решите её.

Входные данные

Каждая строка содержит одно число [latex]n[/latex].

Выходные данные

Для каждого значения [latex]n[/latex] следует вывести в отдельной строке сумму [latex]\sum\limits_{i=1}^n gcd [/latex] для всех [latex] 1 ≤ i ≤ n[/latex].

Тесты

Входные данные Выходные данные
[latex]2[/latex] [latex]6[/latex] $3$
$15$
[latex]1[/latex] [latex]50[/latex] [latex]100[/latex] $1$
$195$
$520$
[latex]7[/latex] [latex]4791[/latex] [latex]12345678[/latex] [latex]478900[/latex] $13$
$15965$
$170994915$
$4980040$
[latex]123[/latex] [latex]7777[/latex] [latex]157423949[/latex] [latex]904573[/latex] $2147483648$ $405$
$54873$
$613124817$
$1809145$
$35433480192$

Код программы

Решение задачи

Согласно свойству НОД, если некоторые числа [latex]a_1[/latex] и [latex]a_2[/latex] взаимно просты, то [latex]\gcd \left(a_1 \cdot a_2, c\right) = \gcd \left(a_1, c\right) \cdot \gcd \left(a_2, c\right)[/latex], где [latex]c[/latex] — некоторая константа. Если же вместо [latex]c[/latex] взять [latex]i[/latex] ([latex] 1 ≤ i ≤ a_1 \cdot a_2[/latex]) и просуммировать по [latex]i[/latex] обе части равенства, получим:
[latex]\sum\limits_{i=1}^{a_1 \cdot a_2} \gcd \left(a_1 \cdot a_2, i\right) = \sum\limits_{i=1}^{a_1 \cdot a_2} \left(\gcd \left(a_1, i\right) \cdot \gcd \left(a_2, i\right)\right) = \sum\limits_{i=1}^{a_1} \gcd \left(a_1, i\right) \cdot \sum\limits_{i=1}^{a_2} \gcd \left(a_2, i\right)[/latex].
Значит мы можем данное число представить как произведение простых в некоторых степенях. Эти числа, очевидно, будут взаимно простыми, из чего следует возможность применения данного свойства и последующего суммирования по [latex]i[/latex].
Теперь докажем, что для любого простого числа [latex]p[/latex] в степени [latex]a\geqslant 1[/latex] верно следующее равенство:
[latex]\sum\limits_{i=1}^{p^a} \gcd\left(p^a, i\right) = \left(a + 1\right)\cdot p^a — a \cdot p^{a-1} [/latex].
Обозначим $\sum\limits_{i=1}^{r} \gcd\left(r, i\right)$ как $g\left(r\right)$.
База индукции:
[latex]a = 1[/latex]:
$$g\left(p\right) = \gcd\left(p, 1\right) + \gcd\left(p, 2\right) + \ldots + \gcd\left(p, p\right) = \left(p — 1 \right) + p = 2 \cdot p — 1.$$
Если [latex]a = 2[/latex]:
$$g\left(p^{2}\right) = \gcd\left(p^{2}, 1\right) + \gcd\left(p^{2}, 2\right) + \ldots + \gcd\left(p^{2}, p\right) + \gcd\left(p^{2}, p + 1\right) + \ldots + \\ + \gcd\left(p^{2}, 2 \cdot p\right) + \ldots + \gcd\left(p^{2}, p^{2}\right) = 1 + 1 + \ldots + p + 1 + \ldots + p + \ldots + p^{2} = \\ = \left( p^{2} — p \right) + p \cdot \left( p — 1 \right) + p^{2} = 3 \cdot p^{2} — 2\cdot p.$$
Для любых $a \geqslant 2$:
$$g\left(p^{a}\right) = \sum\limits_{j=1}^{p^{a-1}} \gcd\left(p^a, j\right) + \sum\limits_{j=p^{a — 1} + 1}^{p^{a} — 1} \gcd\left(p^a, j\right) + p^{a} =g\left(p^{a — 1}\right) + p^{a} + \\ + \sum\limits_{j=p^{a — 1} + 1}^{p^{a} — 1} \gcd\left(p^a — 1, j\right).$$
Причем:
$$\sum\limits_{j=p^{a — 1} + 1}^{p^{a} — 1} \gcd\left(p^a — 1, j\right) = \sum\limits_{j=1}^{p^{a} — p^{a-1} — 1} \gcd\left(p^{a — 1}, j\right) = \\ = \sum\limits_{j=1}^{p^{a} — p^{a-1}} \gcd\left(p^{a — 1}, j\right) — p^{a — 1} = \left( p — 1\right)\cdot g\left(p^{a-1}\right) — p^{a-1}.$$
Откуда следует:
$$g\left(p^{a}\right) = p^{a} — p^{a-1} + p\cdot g\left(p^{a-1}\right).$$
Предположение индукции:
Пусть [latex]a = b[/latex]:
$$g\left(p^{b}\right) = \left(b + 1\right) \cdot p^b — b \cdot p^{b-1}.$$
Шаг индукции:
Пусть [latex]a = b + 1[/latex]:
$$g\left(p^{b + 1}\right) = p^{b + 1} — p^{b} + p\cdot g\left(p^{b}\right) = p^{b + 1} — p^{b} + p\cdot \left[\left(b+1\right) \cdot p^{b} + b\cdot p^{b-1}\right] = \\ = \left(b + 2\right)\cdot p^{b+1} — \left(b + 1\right)\cdot p^{b}.$$

Ссылки

Условие задачи на e-olymp
Код решения

e-olymp 520. Сумма всех

Сумма всех

Вычислите сумму всех заданных чисел.

Входные данные

Содержит [latex]n[/latex] [latex] (1 ≤ n ≤ 10^5) [/latex] целых чисел. Все числа не превосходят [latex]10^9[/latex] по абсолютной величине.

Выходные данные

Выведите сумму всех заданных чисел.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 [latex]2[/latex] [latex]4[/latex] [latex]6[/latex]
2 [latex]3[/latex] [latex]3[/latex]
3 [latex]1[/latex] [latex]2[/latex] [latex]3[/latex] [latex]2[/latex] [latex]1[/latex] [latex]9[/latex]
4 [latex]1[/latex] [latex]2[/latex] [latex]3[/latex] [latex]4[/latex] [latex]10[/latex]
5 [latex]0[/latex] [latex]0[/latex] [latex]0[/latex] [latex]0[/latex] [latex]0[/latex]

 

Код программы

Решение задачи

Пользователь вводит числа до тех пор, пока программа не завершит работу. Как только это случается, программа выдаёт ответ в виде суммы всех ранее введённых чисел. Также, стоит использовать переменную типа long из-за того, что сумма чисел может быть довольно большой и явно превышать максимальное допустимое значение для переменной типа int.

Ссылки

• Задача на e-olymp.

• Решение на сайте ideone.

e-olymp 1000. Задача a + b

Задача

Вычислите сумму [latex]\textbf {a + b}[/latex].

Входные данные

В каждой строке задано два целых числа [latex]\textbf{a}[/latex] и [latex]\textbf{b}[/latex] ([latex] \bigl| \textbf {a} \bigr|, \bigl| \textbf {b} \bigr| \textbf {≤ 30000}[/latex]).

Выходные данные

Для каждого теста выведите сумму [latex]\textbf {a + b}[/latex] в отдельной строке.

Тесты

Входные данные Выходные данные
$4$ $8$
$5$ $0$
$-6$ $8$
$12$
$5$
$2$
$-3$ $3$ $0$
$12$ $8$
$10$ $10$
$20$
$20$
$30000$ $30000$
$3000$ $3000$
$300$ $300$
$30$ $30$
$3$ $3$
$60000$
$6000$
$600$
$60$
$6$
$10$ $23$
$613$ $2$
$-200$ $300$
$33$
$615$
$100$

Код программы

Решение задачи

Пока вводятся пары чисел, они считываются и на экран выводится их сумма, затем курсор переходит на новую строку.

Ссылки

Условие задачи на сайте E-Olymp
Код решения задачи

e-olymp 542. Поставка содовой воды

Задача

Тим ужасно любит содовую воду, иногда он ею никак не может напиться. Еще более досадным является тот факт, что у него постоянно нет денег. Поэтому единственным легальным способом их получения является продажа пустых бутылок из-под соды. Иногда в добавок к его лично выпитым бутылкам добавляются те, которые Тим иногда находит на улице. Однажды Тима настолько замучила жажда, что он решил пить до тех пор пока мог себе это позволить.

Входные данные

Три целых неотрицательных числа [latex]e[/latex], [latex]f[/latex], [latex]c[/latex], где [latex]e[/latex] ([latex]e < 1000[/latex]) — количество пустых бутылок, имеющихся у Тима в начале дня, [latex]f[/latex] ([latex]f < 1000[/latex]) — количество пустых бутылок, найденных в течение дня, и [latex]c[/latex] ([latex]1 < c < 2000[/latex]) — количество пустых бутылок, необходимых для покупки новой бутылки.

Выходные данные

Сколько бутылок содовой воды смог выпить Тим, когда его замучила жажда?

Тесты

Входные данные Выходные данные
[latex]9[/latex] [latex]0[/latex] [latex]3[/latex] [latex]4[/latex]
[latex]5[/latex] [latex]5[/latex] [latex]2[/latex] [latex]9[/latex]
[latex]0[/latex] [latex]8[/latex] [latex]4[/latex] [latex]2[/latex]
[latex]22[/latex] [latex]0[/latex] [latex]4[/latex] [latex]7[/latex]

Код программы

Решение задачи

Можно считать, что изначально у Тима имеется [latex]e+f[/latex] пустых бутылок. Допустим, у него есть хотя бы [latex]c[/latex] бутылок, необходимых для покупки новой, Тим идет и меняет их на одну полную бутылку. Затем выпивает её, после чего общее количество пустых у него уменьшается на [latex]c-1[/latex]. То есть за [latex]e+f[/latex] пустых бутылок он сможет выпить [latex]\frac{e+f}{c-1}[/latex] бутылок содовой воды. Нам также следует добавить к [latex]c-1[/latex] маленькую константу [latex]a = 0.0001[/latex] для корректировки значения, чтобы в случае когда количество бутылок кратно [latex]c-1[/latex], Тиму нельзя было взять новую бутылку с недостающим количеством пустых бутылок для этого, следовательно, он должен выпить на одну бутылку меньше. В результате выводим целое число бутылок содовой воды, которые Тим смог выпить, когда его замучила жажда.

Ссылки

Условие задачи на e-olymp
Код решения на ideone