D2655B. Cумма ряда с заданной точностью

Задача
Сколько примерно надо взять членов ряда, чтобы найти его сумму с точностью до
[latex]\varepsilon [/latex], если [latex]\sum\limits _{ n=1 }^{ \infty }{ \frac { 1 }{ (2n-1)! } } [/latex]

Тесты

Входные данные Выходные данные
Точность Кол-во взятых членов ряда Значение суммы
1 1 2 1.1666666667
2 1е-5 5 1.1752011684
3 100 1 1
4 1e-10 7 1.1752011936

Код на C++

Код на Java

Решение
Очевидно, ряд является положительным, и общий член ряда стремится к нулю. Ряд сходится по признаку Д’аламбера:
[latex] \lim\limits_{n \rightarrow \infty } \frac{ a_{n+1} }{a_{n}} = \lim\limits_{n \rightarrow \infty } \frac{ \big(2n-1\big)! }{ \big(2n+1\big)! } = \lim\limits_{n \rightarrow \infty } \frac{1}{2n \big(2n+1\big) } =0 < 1[/latex].
Оценим остаток ряда, исходя из того, что [latex]k! > \left( \frac{k}{e} \right) ^{k} , \big(k=1,2,\dots\big) [/latex]:
[latex]R_{N}<\sum\limits_{n=N+1}^\infty \left(\frac{e}{2n-1}\right)^{2n-1}\leq\sum\limits_{n=N+1}^\infty \left(\frac{e}{2N+1}\right)^{2n-1}=\left(\frac{e}{2N+1}\right)^{2N+1}\sum\limits_{i=0}^\infty \left(\frac{e}{2N+1}\right)^{2i}[/latex] Поскольку при [latex]N\geq1[/latex] [latex]\frac{e}{2N+1}<1[/latex]:
[latex]R_{N} < \left(\frac{e}{2N+1}\right)^{2N+1}\frac{1}{1-\left(\frac{e}{2N+1}\right)^2}[/latex]

В переменной sum хранится текущее значение суммы ряда, в last — последний рассмотренный член ряда. В начале работы программы вводится требуемая точность eps. Можно заметить, что для получения [latex]n[/latex]-го члена ряда достаточно разделить предыдущий на [latex]\left(2n-2\right)\cdot\left(2n-1\right)[/latex], однако необходимо отдельно рассмотреть случай, когда [latex]n = 1[/latex]. В цикле увеличиваем [latex]n[/latex], находим значение следующего члена ряда и прибавляем к sum, пока остаток ряда не станет достаточно маленьким. Оцениваем остаток ряда при помощи функции Rn(int n). Во время её работы может потребоваться возведение числа в большую степень, делаем это по алгоритму бинарного возведения в степень.

Ссылка на код на ideone.com: здесь (C++) и здесь (Java).
Условие задачи (стр. 259)

А137е

Даны натуральные [latex] n[/latex], действительные [latex] a_{1},\ldots,a_{n}[/latex].

Вывести: [latex] a_1+1!, a_2 +2!, …, a_n+n![/latex].

n a1 a2 a3 a4
Input: 4  1 2 3 4 Output: 2.00 4.00 9.00 28.00
Input: 4 0.1 0.2 0.3 0.4 Output: 1.10 2.20 6.30 24.40

Описываем переменную факториала и переменную из потока типа [latex]double[/latex]. Запускаем цикл [latex]for[/latex], от [latex]1[/latex] до [latex]n[/latex]. Дальше в теле цикла описываем чтение элементов, увеличение факториала и вывод суммы цифр из потока и факториала.

Ссылка на программу.

А99

Щебетовський Дмитро Геннадійович
Щебетовський Дмитро Геннадійович

Latest posts by Щебетовський Дмитро Геннадійович (see all)

Задача: Пусть [latex]a_{1}=4[/latex], b1=v, an=2bk-1+ak-1. bk=2a^2k-1+bk-1, k=2,3…

Даны действительные u, v, натуральное n.

Найти Е от n при k=1 (ak*bk)/(k+1)!

Тесты:

N U V Результат Вывод
2 4 3 64 тест пройден
1 4 2 4 тест пройден
2 1 2 4 тест пройден
0 3 1 1 тест пройден
1 2 3 3 тест пройден

Код:

Решение:
if (M == 0) // массив
return 1; // возвращаем факториал от нуля, это 1
else // Во всех остальных случаях
return M * fact(M — 1); // делаем рекурсию.

Пишем условия и формулы:

sum = a * b / fact(k + 1);
for (k = 2; k <= n; k++) // цикл

Цикл:
t = a;
a = 2*b + a;
b = 2 * t * t + b;
sum = sum + (a * b / fact(k + 1));

код задачи в ideone: http://ideone.com/1fNmWc

А136з

Фесенко Катерина Володимирівна
Фесенко Катерина Володимирівна

Latest posts by Фесенко Катерина Володимирівна (see all)

Задача Вычислить: [latex]-\frac{a_1}{1!}+\frac{a_2}{2!}-…+\frac{(-1)^na_n}{n!}[/latex]

Тест

n последовательность sum(wolframalpha)
2 0 0 0
2 5 8 -1
3 5 8 12 -3
4 1 2 3 24  1
 5  0 0 0 2 3  0, 058333
Ссылка на программу:http://ideone.com/F0UyqY

Решение:
В этой задаче главное правильно расставить знаки, так  как  это повлияет на результат.Поэтому мы заводим переменную [latex]sign[/latex], которая будет следить за знаком. Далее проверяем  чётность, если элемент делиться на 2 без остатка, то он получает знак [latex]+[/latex], в противном случае [latex]-[/latex]:

Описываем факториал:

Выполняем суммирование и делим на факториал:

Вводим в [latex]input[/latex] количество элементов ([latex]n[/latex])  и сами элементы.Получаем ответ.

Ю3.37

Божик Семен
Божик Семен

Latest posts by Божик Семен (see all)

Задача. Численно убедиться в справедливости равенства, для чего для заданного значения аргумента [latex]x[/latex] вычислить левую его часть и разложение, стоящее в правой части, с заданной погрешностью [latex]e[/latex]. Испытать разложение на сходимость при разных значениях аргумента, оценить скорость сходимости, для чего вывести число итераций [latex]n[/latex](слагаемых или сомножителей), необходимых для достижения заданной точности.

[latex]\frac {{e}^{x}-{e}^{-x}}{2} =x+\frac {{x}^{3}}{3!}+\frac {{x}^{5}}{5!} +…+\frac {{x}^{2n-1}}{(2n-1)!} +…[/latex]
x e результат Комментарий
5 0.01 0.002312 Работает
3.14 0.999 0.686728 Работает
4 0 Эквивалентно Работает
Всё просто. Считаем левую часть, считает правую часть циклом. В том же цикле ждём момента когда [latex]le-pr[/latex] будет меньше или равно заданной погрешности.

ideone

Вывод: Задача решена.

А36

Гусак Дмитро Євгенович
Гусак Дмитро Євгенович

Latest posts by Гусак Дмитро Євгенович (see all)

Задача: Даны действительные числа [latex]a[/latex], [latex]b[/latex], [latex]c[/latex]Проверить, выполняются ли неравенства  [latex]a<b<c[/latex].

Тесты:

Ввод Вывод Результат
a b c неравенство                     не выполнено
2 1 3 b<=a<c: нер-во a<b<c                 не выполняется неравенство                     не выполнено
1 3 2 a<=c<=b: нер-во a<b<c                 не выполняется неравенство                     не выполнено
3 1 2 b<=c<=a: нер-во a<b<c                 не выполняется неравенство                     не выполнено
3 2 1 c<=b<=a: нер-во a<b<c                 не выполняется неравенство                     не выполнено
2 3 1 c<=a<b: нер-во a<b<c                 не выполняется неравенство                     не выполнено
1 2 3 нер-во a<b<c справедливо неравенство выполнено

Код программы:

Отчет:

После ввода чисел a, b, c программа проверит их соотношения. Ввиду наличия трех сравниваемых чисел имеем 3! = 6 возможных комбинаций чисел, и только одна из них соответствует требованию. Если неравенство [latex]a<b<c[/latex] имеет место быть, то программа сообщит о его выполнении. В противном же случае консоль выдаст ответ о не выполненном неравенстве, предварительно сообщив причину.

Копия кода на сайте Ideone: ideone.com/aYmMJ2