e-olymp 918. Какая четверть?

Задача

Задана точка с координатами [latex]x[/latex] и [latex]y[/latex]. Определить, в какой координатной четверти она расположена.

Входные данные

В единственной строке через пробел заданы [latex]2[/latex] вещественных числа — координаты точки, значения координат по модулю не превышают [latex]100[/latex].

Выходные данные

Единственное число — номер соответствующей четверти, либо [latex]0[/latex] , если однозначно определить четверть невозможно.

Тесты

Входные данные

Выходные данные
[latex]x[/latex] [latex]y[/latex] Четверть
12 31 1
-10 18 2
-15 -25 3
13 -13 4
0 0 0

 

Решение

Четверти координатной плоскости

В прямоугольной системе координат на плоскости выделяют 4 четверти: 1, 2, 3, 4.
1-й четветри соответствуют точки, имеющие обе ([latex]x[/latex] и [latex]y[/latex]) положительные координаты.
2-ая четверть: [latex]x \lt 0[/latex], [latex]y \gt 0[/latex].
3-ая четверть: [latex]x \lt 0[/latex], [latex]y \lt 0[/latex].
4-ая четверть: [latex]x \gt 0[/latex], [latex]y \lt 0[/latex].
Точка с координатами ([latex]0[/latex];[latex]0[/latex]), находится в начале координат.
Если точка лежит на оси [latex]«Oy»[/latex], то её абсцисса равна [latex]0[/latex].
Если точка лежит на оси [latex]«Ox»[/latex], то её ордината равна [latex]0[/latex].

Ссылки

e-olymp
Ideone

e-olymp 2262. Явная формула

Задача

Дано 10 булевых переменных  [latex] x_{1},\:x_{2},\:x_{3} ,\:x_{4},\:x_{5},\:x_{6},\:x_{7},\:x_{8},\:x_{9},\:x_{10} [/latex]. Вычислите количество пар и троек, у которых хотя бы одна переменная установлена в [latex]1[/latex]. Установим [latex]f( x_{1},\:x_{2},\:x_{3} ,\:x_{4},\:x_{5},\:x_{6},\:x_{7},\:x_{8},\:x_{9},\:x_{10}) = 1[/latex]  если это количество нечетно и [latex]f( x_{1},\:x_{2},\:x_{3} ,\:x_{4},\:x_{5},\:x_{6},\:x_{7},\:x_{8},\:x_{9},\:x_{10}) = 0[/latex]  если количество четно.
Рассмотрим явную формулу, которая реализует функцию [latex]f( x_{1},\:x_{2},\:x_{3} ,\:x_{4},\:x_{5},\:x_{6},\:x_{7},\:x_{8},\:x_{9},\:x_{10}):[/latex] [latex]f( x_{1},\:x_{2},\:x_{3} ,\:x_{4},\:x_{5},\:x_{6},\:x_{7},\:x_{8},\:x_{9},\:x_{10}) = [/latex] [latex] \left( x_{1}\vee x_{2} \right) \oplus \left( x_{1}\vee x_{3} \right) \oplus \left( x_{1}\vee x_{4} \right)\oplus \left( x_{1}\vee x_{5} \right)
\oplus \left( x_{1}\vee x_{6} \right) \oplus \left( x_{1}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{8} \right) \\
\oplus \left( x_{1}\vee x_{9} \right) \oplus \left( x_{1}\vee x_{10} \right) \oplus \left( x_{2}\vee x_{3} \right)
\oplus \left( x_{2}\vee x_{4} \right) \oplus \left( x_{2}\vee x_{5} \right) \oplus \left( x_{2}\vee x_{6} \right) \\
\oplus \left( x_{2}\vee x_{7} \right) \oplus \left( x_{2}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{9} \right)
\oplus \left( x_{2}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{4} \right) \oplus \left( x_{3}\vee x_{5} \right) \\
\oplus \left( x_{3}\vee x_{6} \right) \oplus \left( x_{3}\vee x_{7} \right) \oplus \left( x_{3}\vee x_{8} \right)
\oplus \left( x_{3}\vee x_{9} \right) \oplus \left( x_{3}\vee x_{10} \right) \oplus \left( x_{4}\vee x_{5} \right) \\
\oplus \left( x_{4}\vee x_{6} \right) \oplus \left( x_{4}\vee x_{7} \right) \oplus \left( x_{4}\vee x_{8} \right)
\oplus \left( x_{4}\vee x_{9} \right) \oplus \left( x_{4}\vee x_{10} \right) \oplus \left( x_{5}\vee x_{6} \right) \\
\oplus \left( x_{5}\vee x_{7} \right) \oplus \left( x_{5}\vee x_{8} \right) \oplus \left( x_{5}\vee x_{9} \right)
\oplus \left( x_{5}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{7} \right) \oplus \left( x_{6}\vee x_{8} \right) \\
\oplus \left( x_{6}\vee x_{9} \right) \oplus \left( x_{6}\vee x_{10} \right) \oplus \left( x_{7}\vee x_{8} \right)
\oplus \left( x_{7}\vee x_{9} \right) \oplus \left( x_{7}\vee x_{10} \right) \oplus \left( x_{8}\vee x_{9} \right) \\
\oplus \left( x_{8}\vee x_{10} \right) \oplus \left( x_{9}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{3} \right)
\oplus \left( x_{1}\vee x_{2}\vee x_{4} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{5} \right) \\ \oplus \left( x_{1}\vee x_{2}\vee x_{6} \right)
\oplus \left( x_{1}\vee x_{2}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{8} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{9} \right)
\oplus \\ \left( x_{1}\vee x_{2}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{4} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{5} \right)
\oplus \left( x_{1}\vee x_{3}\vee x_{6} \right) \oplus \\ \left( x_{1}\vee x_{3}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{3}\vee x_{9} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{4}\vee x_{5} \right) \\
\oplus \left( x_{1}\vee x_{4}\vee x_{6} \right) \oplus \left( x_{1}\vee x_{4}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{4}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{4}\vee x_{9} \right) \oplus \\ \left( x_{1}\vee x_{4}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{5}\vee x_{6} \right)
\oplus \left( x_{1}\vee x_{5}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{1}\vee x_{5}\vee x_{9} \right) \\
\oplus \left( x_{1}\vee x_{5}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{6}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{6}\vee x_{9} \right) \\ \oplus \left( x_{1}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{7}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{7}\vee x_{9} \right) \oplus \left( x_{1}\vee x_{7}\vee x_{10} \right) \oplus \\ \left( x_{1}\vee x_{8}\vee x_{9} \right)
\oplus \left( x_{1}\vee x_{8}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{2}\vee x_{3}\vee x_{4} \right)
\oplus \left( x_{2}\vee x_{3}\vee x_{5} \right) \\ \oplus \left( x_{2}\vee x_{3}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{3}\vee x_{7} \right)
\oplus \left( x_{2}\vee x_{3}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{3}\vee x_{9} \right) \oplus \\ \left( x_{2}\vee x_{3}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{4}\vee x_{5} \right) \oplus \left( x_{2}\vee x_{4}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{4}\vee x_{7} \right)
\oplus \left( x_{2}\vee x_{4}\vee x_{8} \right) \\ \oplus \left( x_{2}\vee x_{4}\vee x_{9} \right) \oplus \left( x_{2}\vee x_{4}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{4}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{7} \right) \\
\oplus \left( x_{2}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{9} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{2}\vee x_{6}\vee x_{8} \right) \\ \oplus \left( x_{2}\vee x_{6}\vee x_{9} \right)
\oplus \left( x_{2}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{2}\vee x_{7}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{7}\vee x_{9} \right)
\oplus \left( x_{2}\vee x_{7}\vee x_{10} \right) \\ \oplus \left( x_{2}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{2}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{5} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{6} \right) \\
\oplus \left( x_{3}\vee x_{4}\vee x_{7} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{8} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{9} \right)
\oplus \left( x_{3}\vee x_{4}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{5}\vee x_{6} \right) \\ \oplus \left( x_{3}\vee x_{5}\vee x_{7} \right)
\oplus \left( x_{3}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{3}\vee x_{5}\vee x_{9} \right) \oplus \left( x_{3}\vee x_{5}\vee x_{10} \right)
\oplus \left( x_{3}\vee x_{6}\vee x_{7} \right) \\ \oplus \left( x_{3}\vee x_{6}\vee x_{8} \right) \oplus \left( x_{3}\vee x_{6}\vee x_{9} \right)
\oplus \left( x_{3}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{7}\vee x_{8} \right) \\ \oplus \left( x_{3}\vee x_{7}\vee x_{9} \right)
\oplus \left( x_{3}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{3}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{3}\vee x_{9}\vee x_{10} \right) \\ \oplus \left( x_{4}\vee x_{5}\vee x_{6} \right) \oplus \left( x_{4}\vee x_{5}\vee x_{7} \right)
\oplus \left( x_{4}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{4}\vee x_{5}\vee x_{9} \right) \oplus \left( x_{4}\vee x_{5}\vee x_{10} \right) \\
\oplus \left( x_{4}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{4}\vee x_{6}\vee x_{8} \right) \oplus \left( x_{4}\vee x_{6}\vee x_{9} \right)
\oplus \left( x_{4}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{4}\vee x_{7}\vee x_{8} \right) \\ \oplus \left( x_{4}\vee x_{7}\vee x_{9} \right)
\oplus \left( x_{4}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{4}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{4}\vee x_{8}\vee x_{10} \right) \\
\oplus \left( x_{4}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{5}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{5}\vee x_{6}\vee x_{8} \right)
\oplus \left( x_{5}\vee x_{6}\vee x_{9} \right) \oplus \left( x_{5}\vee x_{6}\vee x_{10} \right) \\ \oplus \left( x_{5}\vee x_{7}\vee x_{8} \right)
\oplus \left( x_{5}\vee x_{7}\vee x_{9} \right) \oplus \left( x_{5}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{5}\vee x_{8}\vee x_{9} \right)
\oplus \left( x_{5}\vee x_{8}\vee x_{10} \right) \\ \oplus \left( x_{5}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{7}\vee x_{8} \right)
\oplus \left( x_{6}\vee x_{7}\vee x_{9} \right) \oplus \left( x_{6}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{8}\vee x_{9} \right) \\
\oplus \left( x_{6}\vee x_{8}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{6}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{6}\vee x_{9}\vee x_{10} \right) \\ \oplus \left( x_{7}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{7}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{7}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{8}\vee x_{9}\vee x_{10} \right) \\
[/latex]

Входные данные

Содержит [latex]10[/latex] чисел  [latex] x_{1},\ x_{2},\ x_{3} ,\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ x_{9},\ x_{10} [/latex].  Каждое из них равно [latex]0[/latex]  или  [latex]1[/latex].

Выходные данные

Вывести единственное значение [latex]f( x_{1}, \ x_{2},\ x_{3} ,\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ x_{9},\ x_{10}).[/latex]

Тесты

Входные данные Выходные данные
1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1

Решение

Рассмотрим все возможные пары и тройки разных переменных из этих десяти (всего существует [latex]45[/latex] пар и  [latex]120[/latex] троек).  Данная формула реализует функцию [latex]f( x_{1},\ x_{2},\ x_{3} ,\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ x_{9},\ x_{10}) [/latex].   В указанной формуле бинарные операции обозначаются  «[latex]\vee[/latex]»  и  «[latex]\oplus[/latex]»,  где «[latex]\vee[/latex]»  —  логическое или ,  а «[latex]\oplus[/latex]»  —  исключающее или

Ссылки

e-olymp
Ideone

e-olymp 7447. Обрезка строки

Задача с сайта e-olymp.com.

Условие задачи

Имеется строка [latex]s[/latex]. Разрешается взять два любых одинаковых соседних символа и удалить их из строки. Эту операцию можно производить пока имеется возможность. Сначала Вы можете выбрать любое количество символов в строке и удалить их. Определить наименьшее количество символов, которое Вы можете удалить сначала так, чтобы затем выполняя разрешенную операцию, получить пустую строку.

Входные данные

Содержит строку [latex]s[/latex] ([latex]1 ≤[/latex] длина[latex]\left( s \right) [/latex] [latex]≤ 100)[/latex].

Выходные данные

Вывести наименьшее количество символов, которое следует удалить сначала.

Тесты

Входные данные Выходные данные
1 abbcddka 2
2 ABBA 0
3 abcde 5
4 abbac 1

Код на C++

Код на Java

Описание

Идея решения состоит в том, чтобы разбить строку на меньшие по длине подстроки и найти ответ на задачу для каждой из них. Для хранения строки используется переменная s, а ответы на подзадачи содержатся в двумерном массиве целых чисел answers. В answers[i][j] находится ответ для подстроки с i-ого по j-й символ включительно. В функции main сначала вводится строка s. Далее ширина и глубина массива answers устанавливаются равными длине s. После этого он заполняется начальными значениями. Значение [latex]-1[/latex] означает, что ответ для этой ячейки ещё не был найден. Однако очевидно, что если строка состоит ровно из одного символа, согласно условию задачи, его придётся удалить, значит, главную диагональ можно сразу заполнить единицами. Затем происходит вызов рекурсивной функции calculate, принимающей индексы левой и правой границ целевой подстроки. Первый раз она вызывается для всей строки от первого до последнего символа. Работает эта функция следующим образом: если индекс левой границы отрезка больше индекса правой, что, в случае данной задачи, не имеет смысла, она возвращает ноль. Иначе она возвращает ответ на задачу для данной подстроки, а если этого не делалось ранее, то предварительно находит его. Происходит это так: сначала значение ответа устанавливается равным длине подстроки, поскольку в худшем случае необходимо будет удалить её всю целиком. Если символы на концах подстроки одинаковые, они, как сказано в условии, будут удалены в дальнейшем, потому нужно рассматривать минимум из текущего значения ответа и ответа для подстроки без крайних символов. Однако может оказаться, что выгоднее удалить символы из каких-то двух меньших подстрок, потому далее в цикле рассматриваются все возможные комбинации двух подстрок, из которых можно составить конкатенацией текущую. В итоге получаем ответ на задачу для данной подстроки.

Код на ideone.com. (C++)
Код на ideone.com. (Java)
Засчитанное решение на e-olymp.

e-olymp 1078. Степень строки

Задача

Обозначим через [latex]a \cdot b[/latex] конкатенацию строк [latex]a[/latex] и [latex]b[/latex].

Например, если [latex]a =[/latex]«abc» и [latex]b =[/latex]«def» то [latex]a \cdot b =[/latex]«abcdef».

Если считать конкатенацию строк умножением, то можно определить операцию возведения в степень следующим образом:
[latex]a^{0} =[/latex]«» (пустая строка)
[latex]a^{n+1} = a \cdot a^{n}[/latex]

По заданной строке [latex]s[/latex] необходимо найти наибольшее значение [latex]n[/latex], для которого [latex]s = a^{n}[/latex] для некоторой строки [latex]a[/latex].

Входные данные

Каждый тест состоит из одной строки [latex]s[/latex], содержащей печатные (отображаемые) символы. Строка [latex]s[/latex] содержит не менее одного и не более миллиона символов.

Выходные данные

Для каждой входной строки [latex]s[/latex] вывести в отдельной строке наибольшее значение [latex]n[/latex], для которого [latex]s[/latex] = [latex]a^{n}[/latex] для некоторой строки [latex]a[/latex].

Тесты

Входные данные Выходные данные
abcabc
gcdgcd
gcgcgc
gggggg
hhhh
2
2
3
6
4
BbbbBbbbBbbb
dogdogdog
aaaaaaaa
cstring
3
3
8
1

Код программы (c-string)

Решение задачи (c-string)

Из условия следует, что степень строки определяется максимальным числом одинаковых подстрок. В таком случае степень строки является одним из делителей длины этой строки, и очевидно, что максимальная степень строки будет обратно пропорциональна максимальной длине подстроки.

Для решения поставленной задачи используем функцию cstringpow, которая в качестве аргумента принимает строку, и возвращает её степень. Реализуем эту функцию следующим образом: вначале ищем делители значения переменной size (с использованием счётчика i в цикле), в которую было предварительно была сохранена длина строки, полученная функцией strlen. Числа, которые будут получатся из выражения size/i, будут предполагаемой максимальной степенью строки. Естественно, они будут находится в порядке убывания.
Найденные счётчиком делители будут представлять из себя длины подстрок, на которые можно полностью разбить данную строку. Затем, используя функцию strncmp, сравниваем каждую подстроку. В случае, если какие-то из подстрок не совпали, то предположенная максимальная степень строки не является верной, и необходимо искать следующую. Иначе (если несовпадающих подстрок не найдено, то) значение выражения size/i будет ответом на поставленную задачу. В крайнем случае, необходимое разбиение строки не будет найдено, и тогда совокупностью одинаковых подстрок будет сама строка, а следовательно её степень равна [latex]1[/latex].

Код программы (string)

Решение задачи (string)

Решение задачи с использованием класса string аналогично. Единственное отличие — замена функций strlen и strncmp, предназначенных для работы с c-string, на эквивалентные им методы класса string size и compare.

Ссылки

e-olymp 3358. Чёрный ящик

Задача

В черный ящик кладутся листки с написанными на них числами. На каждом листке — ровно одно целое число. Иногда некоторые листки исчезают из ящика. После каждого события (когда в ящик положили листок, или когда из ящика исчез листок), нужно вывести число, которое встречается чаще всего на листках, находящихся в данный момент в ящике. Если таких чисел несколько, выведите наименьшее.

Входные данные

Первая строка содержит количество событий [latex]n[/latex] [latex]\left(1 \le n \le 2 \times 10^{5} \right)[/latex]. Каждая из следующих n строк содержит описание одного события:

  • [latex]+ x[/latex] — положен листок с числом [latex]x[/latex] [latex]\left(1 \le x \le 10^{6} \right)[/latex];
  • [latex]- x[/latex] — исчез листок с числом [latex]x[/latex] (гарантируется, что в ящике был хотя бы один листок с числом [latex]x[/latex]).

Выходные данные

Вывести в точности [latex]n[/latex] строк — по одной для каждого события. Каждая строка должна содержать одно число — ответ к задаче. Если после какого-то события ящик оказался пуст, следует вывести [latex]0[/latex].

Тесты

Входные данные Выходные данные
3
+ 1
— 1
+ 2
1
0
2
6
+ 1
+ 1000000
— 1
+ 4
+ 4
— 1000000
1
1
1000000
4
4
4
8
+ 71
+ 91
+ 99
+ 71
— 71
— 91
— 71
— 99
71
71
71
71
71
71
99
0

Код программы

Решение задачи

Проанализируем задачу: так как требуется вывести число, которое встречается чаще всего на листках, находящихся в ящике после запроса удаления/добавления, а если таких чисел несколько, то вывести наименьшее, то задачу можно переформулировать следующим образом:

«Даётся последовательность (массив) объектов leaf [latex]x_{1}[/latex], [latex]x_{2}[/latex], [latex]x_{3}[/latex], [latex]\ldots[/latex], [latex]x_{999999}[/latex], [latex]x_{1000000}[/latex], представляющих из себя пару (number, amount)[latex]=x_{i}=\left(i, a_{i}\right) \in {\mathbb{N}_{0}}^{2}[/latex], где первые элементы пар [latex]i[/latex] представляет из себя число/номер листка, а вторые элементы [latex]a_{i}[/latex] — число листков с этим номером. Изначально все элементы пар [latex]a_{i}[/latex] равны нулю (так как изначально ящик пуст). Для запросов первого типа [latex]+ x[/latex] необходимо увеличивать на единицу число [latex]a_{i}[/latex] объекта, у которого номер [latex]i[/latex] равен [latex]x[/latex], а для запросов второго типа — уменьшать. Для каждого запроса необходимо вывести число [latex]j[/latex], удовлетворяющее условию [latex]j = \min\limits_{i \in \mathbb{K}}{i}[/latex], где [latex]\mathbb{K} = \{i \mid a_{i} = \max\limits_{k \in \{1, 2, \ldots, 1000000\}}{a_{k}} \}[/latex]».

Иными словами, число [latex]i[/latex] соответствует некоторому элементу [latex]x_{i} = \left(i, a_{i}\right)[/latex], который в свою очередь определяется операцией такой, что [latex]i[/latex] и [latex]a_{i}[/latex] удовлетворяют приведённым выше условиям. Очевидно, что данная операция является ассоциативной (как объединение минимума и максимума на заданных множествах), а потому для решения задачи воспользуемся универсальным деревом отрезков.

Создадим дерево отрезков box методом read_and_construct из объектов leaf. Так как нумерация листков начинается с единицы, а их число не превышает [latex]10^{6}[/latex], зададим размер базы дерева отрезков [latex]10^{6}+1[/latex], добавив неё элемент с индексом [latex]0[/latex]. Модифицируем метод read_and_construct таким образом, чтобы в функцию-препроцессор передавался номер элемента [latex]i[/latex], дабы была возможность задавать элементам [latex]x_{i}[/latex] их первоначальные значения [latex]\left(i, 0\right)[/latex]. Вышеупомянутую операцию назовём max_leafs и определим таким образом, чтобы она принимала два аргумента [latex]x_{i} = \left(i, a_{i}\right)[/latex] и [latex]x_{j} = \left(j, a_{j}\right)[/latex] и возвращала тот из них, у которого значение [latex]a[/latex] является большим, а в случае равенства этих значений — аргумент с меньшим индексом. Нейтральным элементом относительно данной операции будет, очевидно, пара [latex]\left(+\infty, 0\right)[/latex], но в силу того, что номера элементов не превышают [latex]10^6[/latex], вместо неё мы будем пользоваться парой [latex]\left(2 \times 10^{6}, 0\right)[/latex].

Далее при запросах вида [latex]+ x[/latex] будем увеличивать соответствующее значение [latex]a_{x}[/latex] пары [latex]\left(x, a_{x}\right)[/latex] на единицу, а при запросах вида [latex]- x[/latex] — уменьшать. Для обоих запросов будем выводить номер заданного листка, который удовлетворяет приведённым в задаче условиям, с использованием метода result_on_segment на всём отрезке [latex]\left[0, 10^{6}\right][/latex]. Ответом для каждого запроса будет значение number пары, которую вернёт метод.

Примечание: ситуация когда ящик становится пустым нигде не обрабатывается, но в силу того, что мы определили массив на отрезке [latex]\left[0, 10^{6}\right][/latex] вместо [latex]\left[1, 10^{6}\right][/latex] в нём всегда есть пара [latex]\left(0, 0\right)[/latex] (листки с номером [latex]0[/latex], число (значение [latex]b[/latex]) которых всегда равно [latex]0[/latex] в силу того, что листки с номером [latex]0[/latex] в ящик не добавляются). Так как определённая нами операция всегда возвращает минимальный номер листка, число которого максимально, то в случае, когда ящик пуст (т.е. значения всех [latex]a_{i} = 0, i = 0, 1, \ldots, 10^{6}[/latex]) будет выводится номер листка [latex]0[/latex]. Этот побочный эффект данного нами определения массива решает эту ситуацию и завершает решение задачи.

Ссылки

Просто RSQ

Задача RSQ (Range Sum Query). Вам дан массив, необходимо отвечать на запросы получения суммы на отрезке и изменение одного элемента массива.

Ссылка на задачу на codeforces.com.

Имя входного файла: rsq.in
Имя выходного файла: rsq.out
Ограничение по памяти: 2 секунды
Ограничение по времени: 256 мегабайт

Формат входного файла

Входной файл в первой строке содержит два числа [latex]n[/latex] [latex]\left(1 \le n \le 10^{5} \right)[/latex] — размер массива и [latex]m[/latex] [latex]\left(1 \le m \le 10^{5} \right)[/latex] — количество запросов. Во второй строке задано начальное состояние массива [latex]a_{1}[/latex], [latex]a_{2}[/latex], [latex]\ldots[/latex], [latex]a_{n}[/latex] [latex]\left( -10^{5} \le a_{i} \le 10^{5} \right)[/latex].

Далее идёт [latex]m[/latex] строк с запросами вида [latex]t[/latex] [latex]x[/latex] [latex]y[/latex] [latex]\left( 0 \le t \le 1 \right)[/latex]. Если [latex]t = 0[/latex], тогда на запрос нужно вывести сумму элементов массива с индексами от [latex]x[/latex] до [latex]y[/latex] (в данном случае [latex]1 \le x \le y \le n[/latex]). Если [latex]t = 1[/latex], тогда надо присвоить элементу массива с индексом [latex]x[/latex] значение [latex]y[/latex] (в этом случае [latex]1 \le x \le n[/latex], [latex]-10^{5} \le y \le 10^{5}[/latex]).

Формат выходного файла

На каждый запрос суммы отрезка выведите одно число в новой строке — запрашиваемая сумма.

Примеры

rsq.in rsq.out
5 3
1 2 3 4 5
0 1 5
1 1 -14
0 1 5
15
0
8 2
7 3 -10 4 1 2 5 6
0 2 4
0 5 7
-3
8

Код программы

Решение задачи

Основная идея приведённого выше решения этой задачи заключается в оптимизации обработки запросов суммы построением дерева отрезков.
Сохраним сумму всех элементов массива в переменной sum. Теперь, если нам дан запрос суммы на отрезке [latex]\left[ x; y \right][/latex], то если [latex]y — x > \frac{n}{2}[/latex] (то есть если данный отрезок содержит больше элементов, чем половина всего отрезка) то считаем сумму элементов на отрезке [latex]\left[ 1; x-1 \right] \cup \left[ y+1; n \right] = \left[ 1; n \right] \setminus \left[ x; y \right][/latex] и отнимаем от суммы всех элементов, иначе (если [latex]y — x \le \frac{n}{2}[/latex], то) просто считаем сумму элементов на отрезке [latex]\left[ x; y \right][/latex]. Если же поступает запрос на замену значения элемента, то вычитаем из sum старое значение и прибавляем новое.

Таким образом, максимальная сложность запросов суммы (при простом подходе к задаче) уменьшается вдвое.

Ссылки