Ю3.16

Задача

Сравнить скорость сходимости при вычислении числа [latex]e[/latex] с помощью ряда и бесконечной дроби:

[latex]e=2+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+…[/latex]; [latex]e=1+\frac{1}{1-\frac{1}{2+\frac{1}{3-\frac{1}{2+\frac{1}{5-…}}}}}[/latex]

У нас дан ряд(row) и бесконечная дробь(inf). Для разложения числа  [latex]e[/latex] в ряд использована функция вычисления факториала. Задаем начальные переменные и вычисляем основание натурального логарифма. При достижении заданной точности [latex]E[/latex] цикл вычислений ряда прекращается, и начинается вычисление по методу цепной дроби с заданным в первой части программы количеством итераций (для корректного сравнения скорости сходимости, количество итераций должно быть одинаково).

Алгоритм вычисления представляет собой цикл, в который вложен еще один рекурсивный цикл. Первый цикл do подставляет во второй цикл количество итераций. Во втором цикле for происходит основное вычисление цепной дроби, посредством проверки четных и нечетных шагов. Проверка на четность происходит делением текущей по счету итерации  на 2 с остатком. Если делится без остатка, то итерация четная, иначе- нечетная.

E

Количество итераций ряда(row)

i

Количество итераций цепной дроби(inf)l Комментарий
0.00001 9 7

Бесконечная дробь быстрее сходится к числу е, чем ряд.

Тест пройден.

0.0000002 11 9

Бесконечная дробь быстрее сходится к числу е, чем ряд.

Тест пройден.

0.00078 7 6

Бесконечная дробь быстрее сходится к числу е, чем ряд.

Тест пройден.

0.0004 7 6

Бесконечная дробь быстрее сходится к числу е, чем ряд.

Тест пройден.

При схождении к числу [latex]e[/latex] с точностью [latex]E[/latex] цепная дробь будет  делать это быстрее, чем ряд.

Ниже представлена сама программа(C++).

Код на Java:

 

Также вы можете воспользоватся ссылкой (C++)/ссылкой (Java), для ознакомления с программой.