e-olymp 891. Покупка цветов

Задача. Покупка цветов

На День учителя Вася решил купить букет цветов. В магазине продаются ромашки по $a$ рублей за штуку и гладиолусы по $b$ рублей за штуку ($a < b$). У Васи есть $c$ рублей. Он хочет составить букет из максимально возможного количества цветов, и при этом потратить как можно больше денег. Другими словами, из всех букетов с максимально возможным количеством цветов он хочет выбрать самый дорогой, но не дороже $c$ рублей. Помогите ему вычислить стоимость такого букета.

Входные данные

Три целых числа $a$, $b$, $c$ ($1 ≤ a < b ≤ 100, 0 ≤ c ≤ 1000$).

Выходные данные

Выведите одно число — стоимость самого дорогого букета из максимального количества цветов.

Тесты

Ввод Вывод
1 5 7 0 0
2 3 5 10 9
3 2 3 11 11
4 48 64 306 304
5 17 20 100 100
6 13 15 260 260
7 29 53 999 986
8 17 28 16 0
7 75 100 1000 1000

Решение

Рассмотрим частный случай. Если можно купить по минимальной цене ромашки так, что у нас не будет остатка, то полученное количество цветов будет максимальным и увеличить их стоимость будет невозможно. Значит ответом будет количество денег в кошельке у Васи.

Далее, что бы найти решение для оставшихся вариантов, необходимо найти наибольшую сумму стоимостей максимального количества цветов не превышающую c. Максимальное количество цветов n будет равно количеству цветов с минимальной стоимостью которое можно купить за имеющиеся у Васи деньги. ( c / a).

Что бы оптимизировать код будем проверять условия в цикле с обоих концов (меняя местами количество ромашек и гладиолусов), таким образом мы выполним его за в 2 раза меньшее количество проходов и быстрее найдём максимум. А так же при равенстве искомого значения с его максимально возможным остановим проверку.

Код

Условие задачи

Решение

Код на ideone

e-olymp 2812. Уголок

Задача

Дана прямоугольная доска [latex]M×N[/latex], некоторые клетки в которой вырезаны. Сколькими способами можно поставить на неё «уголок» из трёх клеток так, чтобы все три клетки уголка находились внутри доски и не были вырезаны?

Входные данные

В первой строке входного файла даны два числа [latex]M[/latex] и [latex]N[/latex] [latex](1 \leq M, N \leq 100)[/latex], разделённые пробелом. В следующих [latex]M[/latex] строках содержится по [latex]N[/latex] символов в каждой; [latex]i[/latex]-ый символ [latex]j[/latex]-ой из этих строк равен ‘X’ (большая буква икс), если клетка вырезана, и ‘.’ (точка) в противном случае.

Выходные данные

Выведите одно число — сколько существует способов поставить уголок на данную доску.

Тесты

Входные данные Выходные данные
2 2
..
..
4
2 3
..X
.X.
1
5 4
….
X.XX
….
X..X
..XX
12

Код программы

Решение

Для решения данной задачи создаем динамический массив типа bool x на y. Заполняем соответствующий элемент значением true, когда вводится «.» и значением false в противном случае. Далее увеличиваем значение количества уголков на $1$, если существуют не пустые клетки.

Ссылки

e-olymp
Ideone

e-olymp 1226. Обмен иностранцами

Задача

Ваша неприбыльная организация координирует программу по обмену студентами. И ей нужна Ваша помощь.

Программа обмена работает следующим образом. Каждый из участников дает информацию о месте своем проживания и месте, куда бы он хотел переехать. Программа считается успешной, если каждый студент найдет для обмена подходящего партнера. Другими словами, если некоторый студент желает переехать из $A$ в $B$, то обязательно должен быть другой студент, который хочет переехать из $B$ в $A$. Это простая задача, если участников программы всего $10$. Но что делать если их будет $100001$?

Входные данные

Первая строка содержит количество тестов $t$. Первая строка каждого теста содержит количество студентов $n$ $(1 ≤ n ≤ 100001)$, за которыми следуют $n$ строк, описывающие данные по обмену. Каждая из этих строк содержит информацию об одном студенте — два целых числа, разделенные пробелом, соответствующих текущему месту проживания студента и месту, куда он желает переехать. Места описываются неотрицательными целыми числами, не большими $10^9$. Ни у одного из кандидатов место проживания и место желаемого переезда не совпадают.

Выходные данные

Для каждого теста в отдельной строке вывести $«YES»$ если существует возможность успешно выполнить программу обмена и $«NO»$ иначе.

Тесты

Входные данные Выходные данные
2
2
1 2
2 1
2
31 13
13 31
YES
YES
1
4
17 3
28 15
15 28
3 17
YES
1
4
17 3
28 15
15 28
3 18
NO
3
2
1 2
3 4
2
47 7
7 47
2
12 34
12 34
NO
YES
NO

Код программы

Решение задачи

После задания переменной $n$ (количества студентов) очищаем мультимножество $M$. Для каждой пары $(a, b)$ нашего мультимножества проверяем, есть ли в нем пара $(b, a)$:
1. Если есть, то удаляем пару $(b, a)$.
2. Если нет, то вставляем $(a, b)$.
Если в конце мультимножество $M$ пустое, то у каждой пары $(a, b)$ существует соответствующая ей пара $(b, a)$, следовательно обмен студентами может быть произведен успешно.

Ссылки

Условие задачи на e-olymp.com
Решение задачи на ideone.com

e-olymp 1494. Санта Клаус

Задача

Санта Клаус

Санта Клаус

Санта Клаус готовится к Рождеству. В этот праздник он хочет вручить подарки [latex]n[/latex] детям. Его помощники Эльфы уже собрали два мешка, с которыми он отправится в новогоднее путешествие по всем странам мира. И чтобы Санта не запутался, Эльфы составили список детей, чьи подарки уже лежат в каждом из мешков. Санта хочет помочь Эльфам, и поэтому решил положить в третий мешок подарки для тех детей, которым они еще не подготовлены.

Помогите Санте, составьте список детей, чьи подарки надо положить в третий мешок.

Входные данные

Первая строка входного файла содержит три целых числа: [latex]n[/latex] — число детей, [latex]m[/latex] и [latex]k[/latex] — число подарков в первом и втором мешке соответственно [latex](1\leq n,\;m,\;k\leq 100;m+k\leq n)[/latex]. Вторая строка входного файла содержит [latex]m[/latex] целых чисел — номера детей, подарки для которых лежат в первом мешке. Третья строка входного файла содержит [latex]k[/latex] целых чисел — номера детей, подарки для которых лежат во втором мешке.

Гарантируется что Эльфы положили для каждого ребенка не более одного подарка. Номера всех детей являются целыми положительными числами не превосходящими [latex]n[/latex]. Все дети должны получить подарок на Рождество, иначе Санта расстроится.

Выходные данные

В первой строке выведите одно число [latex]a[/latex] — сколько подарков должно быть в третьем мешке. Во второй строке выведите в произвольном порядке [latex]a[/latex] чисел — номера детей, которым эти подарки должны быть доставлены.

Тесты

Входные данные Выходные данные
2 1 1
2
1
0
3 1 2
1
2 3
0
7 2 1
7 3
1
4
2 4 5 6
100 14 4
2 93 30 56 17 19 75 22 23 5 49 11 8 33
91 40 81 54
82
1 3 4 6 7 9 10 12 13 14 15 16 18 20 21 24 25 26 27 28 29 31 32 34 35 36 37 38 39 41 42 43 44 45 46 47 48 50 51 52 53 55 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 76 77 78 79 80 82 83 84 85 86 87 88 89 90 92 94 95 96 97 98 99 100
10 3 5
2 5 8
3 7 1 4 9
2
6 10
61 40 5
61 20 5
3 4 9 8 49 31 20 33 35 34 61 1 32 53 51 7 21 44 46 47
2 60 50 19 25
36
5 6 10 11 12 13 14 15 16 17 18 22 23 24 26 27 28 29 30 36 37 38 39 40 41 42 43 45 48 52 54 55 56 57 58 59
12 3 3
1 2 3
11 10 8
6
4 5 6 7 9 12

Код программы

Решение

Создадим массив типа  bool , в котором каждому [latex]i[/latex]-ому ребёнку соответствует элемент с индексом [latex]i — 1[/latex], принимающий значение [latex]0[/latex], если для ребёнка ещё нет подарка, и [latex]1[/latex], если подарок уже имеется в одном из мешков. Далее, отмечаем детей, подарки для которых уже лежат в мешках. Наконец, выводим номера тех детей, подарки для которых не были найдены ни в одном из мешков.

Ссылки

Условия задачи на e-olymp
Код задачи на ideone

e-olymp 338. Моя любимая, несократимая…

Задача

“Название задачи можно напевать на мотив марша или строевой песни…”

Сколько существует правильных несократимых дробей на промежутке [[latex]0[/latex]..[latex]1[/latex]], знаменатель которых не превышает [latex]n[/latex]?

Входные данные

Натуральное число [latex]n[/latex] ([latex]n < 10001[/latex]).

Выходные данные

Вывести количество правильных несократимых дробей на промежутке [[latex]0..1[/latex]], знаменатель которых не превышает [latex]n[/latex].

Тесты

 

Входные данные Выходные данные
1 0
10000 30397485
5 9
80 1965
37 431
5168 8119803
9973 30237929

Решение задачи

Для решения данной задачи вопользуемся функцией Эйлера [latex] \varphi (n)[/latex], равной количеству натуральных чисел, меньших [latex]n[/latex] и взаимно простых с ним. Очевидно, что количество правильных несократимых дробей со знаменателем [latex]n[/latex] равно [latex] \varphi (n)[/latex]. И тогда количество правильных дробей со знаменателем, не превыщающим [latex]n[/latex] равно [latex] \sum\limits_{i=2}^{n}{\varphi (n)}[/latex] (тут мы учли, что при [latex]i[/latex] = 1 знаменатель дроби равен 1 и дробь не будет правильной).

Ссылки

Условие задачи на сайте  E-Olymp

код задачи на Ideone

описание функции Эйлера на Wikipedia

e-olymp 7492. Будильник

Задача

Алиса любит свой цифровой будильник. Она устанавливает его каждый вечер. Прошлой ночью Алисе приснились ее часы. К сожалению, единственное, что она помнит — так это количество отображаемых сегментов на часах. Алиса хочет узнать, какое время показывали ее часы во сне.

Часы Алисы содержат четыре цифры: две для часов и две для минут. Например, часы ниже показывают [latex]9[/latex]:[latex]30[/latex] (ведущий ноль высвечивается).

Часы имеют следующее представление цифр:

Входные данные

Одно целое число [latex]n (0≤ n ≤30)[/latex] — количество подсвеченных сегментов на часах Алисы во сне.

Выходные данные

Вывести пять символов в формате [latex]hh:mm[/latex] — время, показываемое часами Алисы во сне. Время должно быть корректным: [latex]0 ≤ hh < 24[/latex] and [latex]0 ≤ mm < 60[/latex]. Если существует несколько решений, то вывести любое. Если решения не существует, то вывести [latex]Impossible[/latex].

Тесты

Входные данные Выходные данные
23 00:02
28 Impossible
0 Impossible
15 01:12

Код программы

Решение

Перебираем i и j (от 0 до 24 и 60 соответственно). a=seg[i/10] (для десятков) и a=seg[i%10] (для остальных чисел) то же самое делаем для j. Тем самым, мы перебираем все возможные варианты количества сегментов. Если a==n (количество сегментов) при переборе и в входных данных совпадает, то выводим наше время и выходим из цикла. Если же при переборе не было такого же числа сегментов, как в входных данных, то решения нет и мы, соответственно, выводим [latex]Impossible[/latex].

Ссылки

e-olymp
Ideone