A328

Алла Марокко
Алла Марокко

Latest posts by Алла Марокко (see all)

Задача:
Найти [latex]100[/latex] первых простых чисел.
Тесты:
Обобщим задачу и для тестов используем разное количество первых простых чисел.

Вход Выход
1 25 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
2 50 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
3 100 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541

Код:

Решение:
Первое простое число печатаем сразу, остальные [latex]n-1[/latex] будем проверять циклами: проверим нечетные числа на нечетные делители(пройдём цикл по делителям). Число простое, если нет делителей. Если не простое, то переходим к следующему. Каждое простое число печатаем до [latex]n[/latex] включительно.
Ссылки:

  1.  Условие задачи.
  2.  Онлайн компилятор ideone.

e-olymp 4496. Приключение Незнайки и его друзей

Задача с сайта e-olymp.com.

Условие задачи

Все мы помним историю о том, как Незнайка со своими друзьями летали на воздушном шаре путешествовать. Но не все знают, что не все человечки влезли в шар, так как у него была ограниченная грузоподъемность.

В этой задаче Вам необходимо узнать, сколько же человечков улетело путешествовать. Известно, что посадка в шар не является оптимальной, а именно: человечки садятся в шар в той очереди, в которой они стоят, как только кому-то из них не хватает места, он и все оставшиеся в очереди разворачиваются и уходят домой.

Входные данные

В первой строке содержится количество человечков [latex]n (1 ≤ n ≤ { 10 }^{ 6 })[/latex] в цветочном городе. Во второй строке заданы веса каждого из человечков в том порядке, в котором они будут садиться в шар. Все веса натуральные числа и не превышают [latex]{ 10 }^{ 9 }[/latex]. Далее следует количество запросов [latex]m (1 ≤ m ≤ { 10 }^{ 5 })[/latex]. Каждый запрос представляет собой одну строку. Если первое число в строке равно единице, то далее следует еще одно число [latex]v (1 ≤ v ≤ { 10 }^{ 9 })[/latex] – грузоподъемность воздушного шара. Если же оно равно двум, то далее следует два числа [latex]x (1 ≤ x ≤ n)[/latex] и [latex]y (1 ≤ y ≤ { 10 }^{ 9 })[/latex] — это значит, что вес человечка, стоящего на позиции [latex]x[/latex], теперь равен [latex]y[/latex].

Выходные данные

Для каждого запроса с номером один выведите в отдельной строке количество человечков, поместившихся в шар.

Тесты

Входные данные Выходные данные
1 5
1 2 3 4 5
5
1 7
1 3
2 1 5
1 7
1 3
3
2
2
0
2 2
1 2
3
1 4
2 1 10
1 4
2
0
3 2
999999999 1000000000
4
1 999999999
2 1 1000000000
1 999999999
1 1000000000
1
0
1

Код программы

Описание

В данной задаче требуется эффективно выполнять две операции: изменять значение одного из элементов массива и находить, сколько человечков поместится в шар при заданной грузоподъёмности. Это было реализовано при помощи структуры segment_tree. В функции main сначала вводится значение n и заполняется массив весов человечков weights, после чего по нему выполняется построение дерева отрезков tr. В его вершинах хранятся частичные суммы элементов массива. Да и в целом функции для построения и выполнения запроса модификации у него такие же, как и у обычного дерева отрезков для нахождения суммы на отрезке. Для удобства в массиве weights и в самом дереве используются элементы с первого по [latex]n[/latex]-й, а не с нулевого по [latex]\left( n-1 \right) [/latex]-й. Далее в ходе работы функции main в цикле выполняется обработка запросов. Сначала вводится тип запроса type. Если запрос второго типа, вводятся позиция человечка x, его новый вес y и вызывается метод update, пересчитывающий значения суммы в вершинах, на которые влияет это изменение. Иначе вводится грузоподъемность воздушного шара v и вызывается метод find_numb_of_p, который находит количество человечков, поместившихся в шар. Работает он следующим образом: если выполняется условие tree_l == tree_r, значит, рассматриваемый отрезок состоит из одного элемента, и функция возвращает [latex]1[/latex], если человечек может поместиться в шар, и [latex]0[/latex], если он слишком тяжёлый. Если отрезок больше, вычисляется индекс элемента, находящегося посередине tree_m. Далее, если сумма весов человечков в левом поддереве tree[v*2] больше, чем грузоподъёмность шара, то никто из правого поддерева уже не поместится, и искать следует только в левом поддереве. Иначе в шар следует посадить всех человечков из левого поддерева (их количество равно tree_m - tree_l + 1) и посмотреть, сколько поместится человечков из правого поддерева. При этом необходимо от максимально допустимого веса отнять вес человечков из левого поддерева, уже сидящих в шаре ( max_w-tree[v*2]).

Код на ideone.com.
Засчитанное решение на e-olymp.com.
При решении задачи был использован материал с сайта e-maxx.ru.

A302. Количество различных цифр числа в его десятичной записи

Задача

Дано натуральное число [latex]N[/latex]. Сколько различных цифр встречается в его десятичной записи?

Входные данные

Натуральное число [latex]N[/latex].

Выходные данные

Количество различных цифр [latex]sum[/latex].

Тесты

Входные данные Выходные данные
[latex]N[/latex] [latex]sum[/latex]
12345678900987654321 sum:10
302 sum:3

Код программы с использованием deque

 

Решение

Создадим дэк [latex]folder[/latex] в котором будем хранить различные цифры десятичной записи. Добавляем первую цифру числа [latex]N[/latex] в дэк и делим [latex]N[/latex] на [latex]10[/latex]. Следующие цифры мы будем добавлять после проверки на отсутствие таких же в [latex]folder[/latex], если цифры совпадают заканчиваем цикл. В конце выводим размер [latex]folder[/latex] который и является [latex]sum[/latex].

Код программы с использованием массива

Решение

Создадим массив [latex]folder[/latex] в котором будем хранить кол-во встреч для различных цифр десятичной записи в соответствующих позициях массива. Увеличиваем на один значения соответствующей позиции массива и делим [latex]N[/latex] на [latex]10[/latex]. Для определения [latex]sum[/latex] делаем цикл и проверяем ненулевые значения массива [latex]folder[/latex].

Ссылки

Ideone через deque;
Ideone через массив;
Условие задачи (стр. 126).

A272. Количество осадков

Задача

Даны действительные числа [latex]a_{1}, a_{2}, …, a_{n}[/latex] – количество осадков (в миллиметрах), выпавших в Москве в течение [latex]n[/latex] лет. Вычислить среднее количество осадков [latex]average[/latex] и отклонение от среднего для каждого года [latex]d_{1}, d_{2}, …, d_{n}[/latex].

Входные данные: 

Последовательность действительных чисел.

Выходные данные:

Среднее количество осадков [latex]average[/latex].
Последовательность действительных чисел [latex]d_{1}, d_{2}, …, d_{n}[/latex] — отклонение от среднего.

Тесты

 №  Входные данные  Выходные данные
 1  0 0 0 0 0 0 1 0 0 0  0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.1 0.1 0.1
 2  1.23 2.34 3.45 4.56 5.67  3.45
2.22 1.11 0 1.11 2.22
 3  234.109 4655.15 43.629 14.109  1236.75
1002.64 3418.4 1193.12 1222.64
 4  5 5 5 5 5 5  5
0 0 0 0 0 0

Код программы

Решение

В цикле считываем числа из входного потока и прибавляем их к переменной [latex]average[/latex] (изначально [latex]average=0[/latex]), а также помещаем их в вектор [latex]v[/latex]. Далее делим [latex]average[/latex] на количество элементов в векторе, таким образом получим среднее количество осадков. Затем при помощи цикла поочередно будем выводить отклонение от среднего количества осадков для каждого года. Отклонением от среднего будет абсолютная величина разности соответствующего элемента вектора [latex]v[/latex] и среднего значения [latex]average[/latex].

Ссылки

e-olymp 3358. Чёрный ящик

Задача

В черный ящик кладутся листки с написанными на них числами. На каждом листке — ровно одно целое число. Иногда некоторые листки исчезают из ящика. После каждого события (когда в ящик положили листок, или когда из ящика исчез листок), нужно вывести число, которое встречается чаще всего на листках, находящихся в данный момент в ящике. Если таких чисел несколько, выведите наименьшее.

Входные данные

Первая строка содержит количество событий [latex]n[/latex] [latex]\left(1 \le n \le 2 \times 10^{5} \right)[/latex]. Каждая из следующих n строк содержит описание одного события:

  • [latex]+ x[/latex] — положен листок с числом [latex]x[/latex] [latex]\left(1 \le x \le 10^{6} \right)[/latex];
  • [latex]- x[/latex] — исчез листок с числом [latex]x[/latex] (гарантируется, что в ящике был хотя бы один листок с числом [latex]x[/latex]).

Выходные данные

Вывести в точности [latex]n[/latex] строк — по одной для каждого события. Каждая строка должна содержать одно число — ответ к задаче. Если после какого-то события ящик оказался пуст, следует вывести [latex]0[/latex].

Тесты

Входные данные Выходные данные
3
+ 1
— 1
+ 2
1
0
2
6
+ 1
+ 1000000
— 1
+ 4
+ 4
— 1000000
1
1
1000000
4
4
4
8
+ 71
+ 91
+ 99
+ 71
— 71
— 91
— 71
— 99
71
71
71
71
71
71
99
0

Код программы

Решение задачи

Проанализируем задачу: так как требуется вывести число, которое встречается чаще всего на листках, находящихся в ящике после запроса удаления/добавления, а если таких чисел несколько, то вывести наименьшее, то задачу можно переформулировать следующим образом:

«Даётся последовательность (массив) объектов leaf [latex]x_{1}[/latex], [latex]x_{2}[/latex], [latex]x_{3}[/latex], [latex]\ldots[/latex], [latex]x_{999999}[/latex], [latex]x_{1000000}[/latex], представляющих из себя пару (number, amount)[latex]=x_{i}=\left(i, a_{i}\right) \in {\mathbb{N}_{0}}^{2}[/latex], где первые элементы пар [latex]i[/latex] представляет из себя число/номер листка, а вторые элементы [latex]a_{i}[/latex] — число листков с этим номером. Изначально все элементы пар [latex]a_{i}[/latex] равны нулю (так как изначально ящик пуст). Для запросов первого типа [latex]+ x[/latex] необходимо увеличивать на единицу число [latex]a_{i}[/latex] объекта, у которого номер [latex]i[/latex] равен [latex]x[/latex], а для запросов второго типа — уменьшать. Для каждого запроса необходимо вывести число [latex]j[/latex], удовлетворяющее условию [latex]j = \min\limits_{i \in \mathbb{K}}{i}[/latex], где [latex]\mathbb{K} = \{i \mid a_{i} = \max\limits_{k \in \{1, 2, \ldots, 1000000\}}{a_{k}} \}[/latex]».

Иными словами, число [latex]i[/latex] соответствует некоторому элементу [latex]x_{i} = \left(i, a_{i}\right)[/latex], который в свою очередь определяется операцией такой, что [latex]i[/latex] и [latex]a_{i}[/latex] удовлетворяют приведённым выше условиям. Очевидно, что данная операция является ассоциативной (как объединение минимума и максимума на заданных множествах), а потому для решения задачи воспользуемся универсальным деревом отрезков.

Создадим дерево отрезков box методом read_and_construct из объектов leaf. Так как нумерация листков начинается с единицы, а их число не превышает [latex]10^{6}[/latex], зададим размер базы дерева отрезков [latex]10^{6}+1[/latex], добавив неё элемент с индексом [latex]0[/latex]. Модифицируем метод read_and_construct таким образом, чтобы в функцию-препроцессор передавался номер элемента [latex]i[/latex], дабы была возможность задавать элементам [latex]x_{i}[/latex] их первоначальные значения [latex]\left(i, 0\right)[/latex]. Вышеупомянутую операцию назовём max_leafs и определим таким образом, чтобы она принимала два аргумента [latex]x_{i} = \left(i, a_{i}\right)[/latex] и [latex]x_{j} = \left(j, a_{j}\right)[/latex] и возвращала тот из них, у которого значение [latex]a[/latex] является большим, а в случае равенства этих значений — аргумент с меньшим индексом. Нейтральным элементом относительно данной операции будет, очевидно, пара [latex]\left(+\infty, 0\right)[/latex], но в силу того, что номера элементов не превышают [latex]10^6[/latex], вместо неё мы будем пользоваться парой [latex]\left(2 \times 10^{6}, 0\right)[/latex].

Далее при запросах вида [latex]+ x[/latex] будем увеличивать соответствующее значение [latex]a_{x}[/latex] пары [latex]\left(x, a_{x}\right)[/latex] на единицу, а при запросах вида [latex]- x[/latex] — уменьшать. Для обоих запросов будем выводить номер заданного листка, который удовлетворяет приведённым в задаче условиям, с использованием метода result_on_segment на всём отрезке [latex]\left[0, 10^{6}\right][/latex]. Ответом для каждого запроса будет значение number пары, которую вернёт метод.

Примечание: ситуация когда ящик становится пустым нигде не обрабатывается, но в силу того, что мы определили массив на отрезке [latex]\left[0, 10^{6}\right][/latex] вместо [latex]\left[1, 10^{6}\right][/latex] в нём всегда есть пара [latex]\left(0, 0\right)[/latex] (листки с номером [latex]0[/latex], число (значение [latex]b[/latex]) которых всегда равно [latex]0[/latex] в силу того, что листки с номером [latex]0[/latex] в ящик не добавляются). Так как определённая нами операция всегда возвращает минимальный номер листка, число которого максимально, то в случае, когда ящик пуст (т.е. значения всех [latex]a_{i} = 0, i = 0, 1, \ldots, 10^{6}[/latex]) будет выводится номер листка [latex]0[/latex]. Этот побочный эффект данного нами определения массива решает эту ситуацию и завершает решение задачи.

Ссылки

e-olymp 595. Новый Лабиринт Амбера

Задача с сайта e-olymp.com

Условие задачи

Как-то Корвину – принцу Амбера, по каким-то важным делам срочно понадобилось попасть в самую далекую тень, которую он только знал. Как всем известно, самый быстрый способ путешествия для принцев Амбера – это Лабиринт Амбера. Но у Корвина были настолько важные дела, что он не хотел тратить время на спуск в подземелье (именно там находится Амберский Лабиринт). Поэтому он решил воспользоваться Новым Лабиринтом, который нарисовал Дворкин. Но этот Лабиринт не так прост, как кажется…

Новый Лабиринт имеет вид последовательных ячеек, идущих друг за другом, пронумерованных от [latex]1[/latex] до [latex]N[/latex]. Из ячейки под номером [latex]i[/latex] можно попасть в ячейки под номерами [latex]i+2[/latex] (если [latex]i+2 ≤ N[/latex]) и [latex]i+3[/latex] (если [latex]i+3 ≤ N[/latex]). На каждой ячейке лежит какое-то количество золотых монет [latex]{ k }_{ i }[/latex]. Для того чтобы пройти лабиринт нужно, начиная ходить из-за границ лабиринта (с нулевой ячейки) продвигаться по выше описанным правилам, при этом подбирая все монетки на ячейках, на которых вы делаете промежуточные остановки. Конечная цель путешествия – попасть на ячейку с номером [latex]N[/latex]. Дальнейшее путешествие (в любое место Вселенной) возможно лишь тогда, когда достигнув ячейки с номером [latex]N[/latex], вы соберете максимально количество монеток. Напишите программу, которая поможет Корвину узнать, какое максимальное количество монеток можно собрать, проходя Новый Лабиринт Амбера.

Входные данные

В первой строке входного файла содержится натуральное число [latex]N (2 ≤ N ≤ 100000)[/latex], а во второй [latex]N[/latex] целых чисел, разделенных одним пробелом, [latex]{ k }_{ i }[/latex] – количество монеток, лежащих в ячейке с номером [latex]i[/latex] [latex](0 ≤ i ≤ 1000)[/latex].

Выходные данные

В выходной файл вывести одно целое число – максимальное количество монеток, которое можно собрать, проходя лабиринт.

Тесты

Входные данные Выходные данные
1 5
1000 2 3 1 3
6
2 2
1 2
2
3 4
1 3 100 0
3

Решение с использованием цикла

Код программы

Засчитанное решение на e-olymp.com.

Описание

Для хранения количества монет в каждой ячейке лабиринта используем массив [latex]dp[/latex] длиной [latex]n+1[/latex] элементов. При этом каждой ячейке лабиринта соответствует ячейка массива с тем же индексом, а нулевой элемент массива понимаем как точку перед входом в лабиринт. В цикле считываем количество монет в каждой ячейке, после чего обнуляем значение нулевого элемента массива, поскольку ячейка, соответствующая ему, находится вне лабиринта, и первого, поскольку в ячейку, соответствующую ему, невозможно попасть никаким образом. Далее в цикле для каждой ячейки лабиринта находим, какое максимальное количество монет может быть у Корвина после её посещения. В ячейку с номером [latex]i[/latex] он может попасть или из ячейки с номером [latex]i-2[/latex], или из ячейки с номером [latex]i-3[/latex]. При этом он несёт с собой все собранные ранее монеты, и добавляет к ним те, что находятся в данной ячейке. Таким образом, формула для нахождения максимального количества монет после посещения [latex]i[/latex]-й ячейки имеет вид [latex]dp[i] = dp[i] + max(dp[i-2], dp[i-3])[/latex], и ответ к задаче хранится в [latex]n[/latex]-й ячейке массива. Дополнительно требуется проводить проверку на выход за границы массива.

Код на ideone.com.

Решение с использованием рекурсивной функции

Код программы

Засчитанное решение на e-olymp.com.

Описание

В данном случае используется функция [latex]f[/latex], принимающая номер ячейки массива и возвращающая максимальное количество монет после посещения ячейки с этим номером. Сначала объявляются два глобальных массива:
[latex]dp[/latex], в [latex]i[/latex]-й ячейке которого изначально хранится количество монет в [latex]i[/latex]-й ячейке лабиринта, и [latex]used[/latex], элементы которого принимают значения [latex]0[/latex] или [latex]1[/latex] (значение [latex]0[/latex] в [latex]i[/latex]-й ячейке означает, что максимальное количество монет после посещения
ячейки лабиринта с тем же номером рассчитано ещё не было). Далее всё происходит как в решении с использованием цикла, но одновременно с чтением входных данных обнуляются элементы [latex]used[/latex], а вместо второго цикла происходит вызов функции [latex]f[/latex]. Сама же функция [latex]f[/latex], если значение параметра меньше двух, возвращает [latex]0[/latex], а иначе, если этого не было сделано ранее, вычисляет максимальное количество монет после посещения ячейки с номером [latex]i[/latex] по формуле [latex]dp[i] = dp[i] + max(dp[i-2], dp[i-3])[/latex] и возвращает его.

Код на ideone.com.
Кроме того, об идее решения данной задачи можно почитать здесь.