e-olymp 108. Среднее число

Задача

Дано три различных числа [latex]a[/latex], [latex]b[/latex], [latex]c[/latex]. Вывести среднее из них.

Входные данные

Числа [latex]a[/latex], [latex]b[/latex], [latex]c[/latex] целые и по модулю не превышают 1000.

Выходные данные

Вывести среднее среди трех чисел.

Тесты

Входные данные Выходные данные
10 4 9 9
2 256 8 8
1 2 3 2

Код программы:

Решение задачи

Я рассмотрел все возможные случаи, а именно 2 на каждую переменную, в которых она может оказаться «средней», удовлетворяя условию. [latex]a[/latex] средняя, если она лежит между [latex]b[/latex] и [latex]c[/latex] или между [latex]c[/latex] и [latex]b[/latex], [latex]b[/latex] если она лежит между [latex]a[/latex] и [latex]c[/latex] или между [latex]c[/latex] и [latex]a[/latex], и [latex]c[/latex] — остальных случаях.

Ссылки

  • Задача на сайте e-olymp
  • Код решения в Ideone

A321. Циклы

Задача

Даны натуральные числа [latex]m, n[/latex], действительные числа [latex] a_1, a_2, …, a_{mn}[/latex]. Вычислить [latex]a_1 a_2 … a_m + a_{m+1} a_{m+2} … a_{2m} + a_{(n – 1) m + 1} a_{(n – 1) m + 2} … a_{nm}[/latex].

Входные данные:
[latex]m, n[/latex] — натуральные числа.
В следующей строке содержится [latex]m \cdot n[/latex] действительных чисел.

Выходные данные
Действительное число, значение требуемого выражения.

Тесты:

Входные данные Выходные данные
1
3 3
1.1342 2.82113 3.5431 4.541 5.081 6.761 7.35781 8.456451 9.6461 10.9321
767.5218903911781
2
5 4
23.2312 -13.016 0.78 1.0 73.48992
-3441.32150 39.94 87.04 0.1 -0.02
94.094 23.0001 0.005 -2.0 -1.0
0.004 -1.01 42.0 0.454 1.5
6593.637250058031
3
3 2
1.1 2.2 3.3 4.4 5.5 6.6
327.426

Код на языке C++:

Код на языке Java:

Решение задачи:
Заведём массив для хранения чисел. Пользуясь циклом [latex]for[/latex] от [latex]1[/latex] до [latex]m \cdot n[/latex], по мере заполнения массива будем считать слагаемые нашего выражения. Для этого воспользуемся оператором [latex] if [/latex], проверяя индексы элементов массива.

Код программы на C++: Ideone
Код программы на Java: Ideone
Условия задачи(стр.134): 321

A303. Вычисления с хранением последовательности значений

Условие задачи

Даны действительные числа [latex]x_1,\;…,\;x_{200}[/latex], принадлежащие интервалу [latex](0, 1][/latex]. Полуинтервал разбивается на 100 равных частей. Вычислить [latex]p_1, …, p_{100}[/latex], где [latex]p_k = \frac{m_k}{2000}[/latex], а [latex]m_k[/latex] — количество заданных чисел, принадлежащих полуинтервалу [latex](0.01(k – 1), 0.01k] \ \ (k = 1, …, 100)[/latex].

Входные данные
Входной файл содержит 200 действительных чисел, принадлежащих интервалу [latex](0, 1][/latex].

Выходные данные
В выходной файл выведите 100 чисел [latex]p_k \ (k = 1, …, 100)[/latex].

Тесты

Входные данные Выходные данные
1
Последовательность [latex]\frac{1}{i}, \ i=1, …, 200[/latex] p[1]=0.067 p[2]=0.013 p[3]=0.006 p[4]=0.003 p[5]=0.002 p[6]=0.0015 p[7]=0.001 p[8]=0.001 p[9]=0.0005 p[10]=0.0005
p[11]=0.0005 p[12]=0 p[13]=0.0005 p[14]=0.0005 p[15]=0 p[16]=0 p[17]=0.0005 p[18]=0 p[19]=0 p[20]=0.0005
p[21]=0 p[22]=0 p[23]=0 p[24]=0 p[25]=0.0005 p[26]=0 p[27]=0 p[28]=0 p[29]=0 p[30]=0
p[31]=0 p[32]=0 p[33]=0.0005 p[34]=0 p[35]=0 p[36]=0 p[37]=0 p[38]=0 p[39]=0 p[40]=0
p[41]=0 p[42]=0 p[43]=0 p[44]=0 p[45]=0 p[46]=0 p[47]=0 p[48]=0 p[49]=0 p[50]=0.0005
p[51]=0 p[52]=0 p[53]=0 p[54]=0 p[55]=0 p[56]=0 p[57]=0 p[58]=0 p[59]=0 p[60]=0
p[61]=0 p[62]=0 p[63]=0 p[64]=0 p[65]=0 p[66]=0 p[67]=0 p[68]=0 p[69]=0 p[70]=0
p[71]=0 p[72]=0 p[73]=0 p[74]=0 p[75]=0 p[76]=0 p[77]=0 p[78]=0 p[79]=0 p[80]=0
p[81]=0 p[82]=0 p[83]=0 p[84]=0 p[85]=0 p[86]=0 p[87]=0 p[88]=0 p[89]=0 p[90]=0
p[91]=0 p[92]=0 p[93]=0 p[94]=0 p[95]=0 p[96]=0 p[97]=0 p[98]=0 p[99]=0 p[100]=0.0005

Код на языке C++:

Код на языке Java:

Решение задачи
Для сортировки чисел по полуинтервалам разделим каждое [latex]x_i[/latex] на [latex]0.01[/latex](т.е. умножим на 100) и округлим вправо. Заведём массив для подсчета количества чисел, принадлежащих полуинтервалам [latex](0.01(k – 1), 0.01k] \ \ (k = 1, …, 100)[/latex]. Выведем [latex]p_k \ (k = 1, …, 100)[/latex].

Условие задачи (стр. 127)
Код задачи на C++: Ideone
Код задачи на Java: Ideone

e-olymp 519. Сумма квадратов

Как лучше кодировать квадрат?

Как лучше кодировать квадрат?

Условие задачи
Найти сумму квадратов двух чисел.

Входные данные
Два целых числа [latex]a[/latex] и [latex]b[/latex]. Числа не превышают [latex]10^9[/latex] по абсолютной величине.

Выходные данные
Выведите одно целое число [latex]a^2 + b^2.[/latex] Continue reading

MS2. Сумма чисел во входном потоке

Условие

Сосчитайте сумму чисел во входном потоке.

Тесты

Ввод
Вывод
1 2 3 4 5 6 21
12 13 14 39
1-100

5050

Решение

Делаем цикл который будет работать, пока не закончиться входной поток, и считаем нашу сумму, затем печатаем ее.

Код на ideone C++
Код на ideone Java

KM194. Взаимно простые числа

Задача

Даны два взаимно простых натуральных числа [latex]a[/latex] и [latex]b[/latex]. Рассмотрим множество [latex]M[/latex] целых чисел, представимых в виде [latex][ax+by],[/latex] где [latex]x[/latex] и [latex]y[/latex] — целые неотрицательные числа. Каково наибольшее целое число [latex]c[/latex], не принадлежащее множеству [latex]M[/latex]?

Входные данные

[latex]a[/latex] и [latex]b[/latex] — два взаимно простых натуральных числа.

Выходные данные

[latex]c[/latex] — наибольшее целое число c, не принадлежащее множеству [latex]M[/latex].

Тесты

Входные данные Выходные данные
[latex]a[/latex] [latex]b[/latex] [latex]c[/latex]
5 3 7
2 1 -1
3 2 1

Код программы на C++

Код программы на Java

Решение

Нарисуем на плоскости систему координат [latex]Oxy[/latex] и сформулируем нашу задачу на геометрическом языке. Каждую пару целых чисел [latex]\left(x,y\right)[/latex] мы будем называть «целой точкой» и изображать красной точкой, если обе её координаты неотрицательны [latex]\left(x\geq0, y\geq0\right)[/latex], и синей точкой — если хотя бы одна координата отрицательна.

Взаимно простые натуральные числа [latex]a[/latex] и [latex]b[/latex] мы считаем фиксированными (для примера возьмём [latex]a=5, b=3[/latex]). Для каждого [latex]n[/latex] уравнение [latex]ax+by=n[/latex] определяет, как известно, прямую. Обозначим её через [latex]l_{n}[/latex]. Разумеется, все прямые [latex]l_{n}[/latex] параллельны друг другу. Пусть [latex]n[/latex] — целое. Будем считать прямую [latex]l_{n}[/latex] красной, если она проходит хотя бы через одну красную точку, и синей — в противном случае. Мы должны выяснить, каково наибольшее [latex]c[/latex], которому соответствует синяя прямая [latex]l_{с}[/latex], и доказать, что тогда из двух прямых [latex]l_{n}[/latex] и [latex]l_{c-n}[/latex] одна-синяя и одна-красная ([latex]n[/latex] — любое целое число).
Мы будем пользоваться в нашем решении перемещениями плоскости, которые отображают множество целых точек на себя и одновременно каждую прямую [latex]l_{n}[/latex] переводят в ту же самую или некоторую другую прямую [latex]l_{\acute{n}}[/latex] из нашего семейства. Это, во-первых, параллельные переносы на любой вектор [latex]\left(p, q\right)[/latex] с целыми [latex]p[/latex] и [latex]q:[/latex] [latex]\left(x,y\right)|\dashrightarrow \left(x+p, y+q\right),[/latex] и, во-вторых, повороты на [latex]180^{\circ}[/latex] (или, что то же самое, симетрии относительно точки) с любыми центрами [latex]\left(\frac{p}{2}, \frac{q}{2}\right)[/latex], где [latex]p[/latex] и [latex]q[/latex] — целые: [latex]\left(x,y\right)|\dashrightarrow \left(p-x, q-y\right).[/latex] Докажем, что на каждой прямой [latex]l_{n}[/latex] целые точки встречаются через равные промежутки.
Лемма. Если [latex]\left(x_{0},y_{0}\right)[/latex] — целая точка на прямой [latex]l_{n}[/latex], то ближайшими к ней целыми точками на [latex]l_{n}[/latex] будут [latex]\left(x_{0}-b,y_{0}+a\right)[/latex] и [latex]\left(x_{0}+b,y_{0}-a\right)[/latex] ([latex]a[/latex] и [latex]b[/latex] взаимно просты).
Рассмотрим прямую [latex]l_{0}[/latex], проходящую через [latex]\left(0, 0\right)[/latex]. Пусть [latex]\left(-b_{1}, a_{1}\right)[/latex] — ближайшая к [latex]\left(0, 0\right)[/latex] целая точка [latex]l_{0}[/latex] такая, что [latex]b_{1}>0[/latex], [latex]a_{1}>0[/latex] (мы ещё не знаем, что [latex]b_{1}=b, a_{1}=a[/latex]), [latex]\left(x_{0}, y_{0}\right)[/latex] — целая точка [latex]l_{n}[/latex]. При переносе на вектор [latex]\left(x_{0}, y_{0}\right)[/latex] отрезок прямой [latex]l_{0}[/latex] от [latex]\left(0, 0\right)[/latex] до [latex]\left(-b_{1}, a_{1}\right)[/latex] перейдет в отрезок [latex]l_{n}[/latex] от [latex]\left(x_{0}, y_{0}\right)[/latex] до [latex]\left(x_{0}-b_{1}, y_{0}+a_{1}\right)[/latex] будет ближайшей к [latex]\left(x_{0}, y_{0}\right)[/latex] точкой [latex]l_{n}[/latex] сверху. Точно так же при переносе на вектор [latex]\left(x_{0}+b_{1}, y_{0}-a_{1}\right)[/latex] — тот же отрезок прямой [latex]l_{0}[/latex] перейдёт в отрезок прямой [latex]l_{n}[/latex] от [latex]\left(x_{0}+b_{1}, y_{0}-a_{1}\right)[/latex] до [latex]\left(x_{0}, y_{0}\right)[/latex]. Следовательно, и на этом отрезке целыми точками будут только его концы.
Отсюда уже следует, то на любой прямой [latex]l_{n}[/latex] (уесли на ней есть хоть одна целая точка) промежуток между соседними целыми точками один и тот же: [latex]a_{1}[/latex] единиц по оси [latex]Oy[/latex] и [latex]b_{1}[/latex] — по оси [latex]Ox[/latex]. Это, в частности, относится и к прямой [latex]l_{0}[/latex]. Поскольку [latex]\left(-b, a\right)[/latex] принадлежит [latex]l_{0}[/latex], то отсюда следует, что [latex]b=db_{1}, a=da_{1}[/latex], где [latex]d[/latex] — некоторое целое число. Но числа [latex]a[/latex] и [latex]b[/latex] по условию взаимно просты. Значит, [latex]d=1[/latex], то есть [latex]a=a_{1}, b=b_{1}[/latex]. Лемма доказана.
Из этой леммы следует, что каждая прямая [latex]l_{n}[/latex], где [latex]n[/latex] — целое, переходит ровно через одну точку внутри полосы [latex]0\leq x\leq b-1[/latex]. При этом, очевидно, если прямая красная, то есть где-то переходит через красную точку, то её целая точка в выделенной полосе тоже будет красной (а точка синей прямой, разумеется, синяя).
Теперь заметим, что при симетрии относительно точки [latex]\left(\frac{b-1}{2} -\frac{1}{2}\right)[/latex] [latex]\left(x,y\right)\mapsto\left(\acute{x}, \acute{y}\right) =\left(b-1-x, -1-y\right)[/latex], полоса [latex]0\leq x\leq b-1[/latex] переходит в себя, причем красные точки переходят в синие, и наоборот. Прямая [latex]l_{n}[/latex] после этой симметрии переходит в прямую [latex]l_{ab-a-b-n}[/latex]: если [latex]ax+by=n[/latex], то [latex]a\acute{x}+b\grave{y}=a\left(b-1-x\right)+b\left(-1-y\right)=ab-a-b-n.[/latex] (Через центр симметрии, где [latex]a\left( \frac{b-1}{2}\right)+b\left(- \frac{1}{2}\right) = \frac{ab-a-b}{2},[/latex] ни одна из наших прямых может и не проходить.)
Ясно, что самая нижняя красная прямая — это [latex]l_{0}[/latex]. Следовательно, самая верхняя синяя прямая — это [latex]l_{ab-a-b}.[/latex] Итак, наибольшее число, не принадлежащее множеству, — это [latex]c=ab-a-b,[/latex] и из двух чисел [latex]n[/latex] и [latex]c-n[/latex] одно принадлежит [latex]M[/latex], а другое — нет.

Ссылки

Ideone C++;
Ideone Java;
Решение задачи Журнал «Квант» №11 г.1973 (стр. 44-45);
Условие задачи Журнал «Квант» №3 г.1973 (стр. 35).