e-olymp 2262. Явная формула

Георгий Мартынюк
Георгий Мартынюк

Latest posts by Георгий Мартынюк (see all)

 

Задача

Дано 10 булевых переменных x1,x2,x3,x4,x5,x6,x7,x8,x9 и x10. Вычислите количество пар и троек, у которых хотя бы одна переменная установлена в 1. Установим f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = 1 если это количество нечетно и f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = 0 если количество четно.
Рассмотрим явную формулу, которая реализует функцию f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10):
f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = [latex] \left( x_{1}\vee x_{2} \right) \oplus \left( x_{1}\vee x_{3} \right) \oplus \left( x_{1}\vee x_{4} \right)\oplus \left( x_{1}\vee x_{5} \right)
\oplus \left( x_{1}\vee x_{6} \right) \oplus \left( x_{1}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{8} \right) \\
\oplus \left( x_{1}\vee x_{9} \right) \oplus \left( x_{1}\vee x_{10} \right) \oplus \left( x_{2}\vee x_{3} \right)
\oplus \left( x_{2}\vee x_{4} \right) \oplus \left( x_{2}\vee x_{5} \right) \oplus \left( x_{2}\vee x_{6} \right) \\
\oplus \left( x_{2}\vee x_{7} \right) \oplus \left( x_{2}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{9} \right)
\oplus \left( x_{2}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{4} \right) \oplus \left( x_{3}\vee x_{5} \right) \\
\oplus \left( x_{3}\vee x_{6} \right) \oplus \left( x_{3}\vee x_{7} \right) \oplus \left( x_{3}\vee x_{8} \right)
\oplus \left( x_{3}\vee x_{9} \right) \oplus \left( x_{3}\vee x_{10} \right) \oplus \left( x_{4}\vee x_{5} \right) \\
\oplus \left( x_{4}\vee x_{6} \right) \oplus \left( x_{4}\vee x_{7} \right) \oplus \left( x_{4}\vee x_{8} \right)
\oplus \left( x_{4}\vee x_{9} \right) \oplus \left( x_{4}\vee x_{10} \right) \oplus \left( x_{5}\vee x_{6} \right) \\
\oplus \left( x_{5}\vee x_{7} \right) \oplus \left( x_{5}\vee x_{8} \right) \oplus \left( x_{5}\vee x_{9} \right)
\oplus \left( x_{5}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{7} \right) \oplus \left( x_{6}\vee x_{8} \right) \\
\oplus \left( x_{6}\vee x_{9} \right) \oplus \left( x_{6}\vee x_{10} \right) \oplus \left( x_{7}\vee x_{8} \right)
\oplus \left( x_{7}\vee x_{9} \right) \oplus \left( x_{7}\vee x_{10} \right) \oplus \left( x_{8}\vee x_{9} \right) \\
\oplus \left( x_{8}\vee x_{10} \right) \oplus \left( x_{9}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{3} \right)
\oplus \left( x_{1}\vee x_{2}\vee x_{4} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{5} \right) \\ \oplus \left( x_{1}\vee x_{2}\vee x_{6} \right)
\oplus \left( x_{1}\vee x_{2}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{8} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{9} \right)
\oplus \\ \left( x_{1}\vee x_{2}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{4} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{5} \right)
\oplus \left( x_{1}\vee x_{3}\vee x_{6} \right) \oplus \\ \left( x_{1}\vee x_{3}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{3}\vee x_{9} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{4}\vee x_{5} \right) \\
\oplus \left( x_{1}\vee x_{4}\vee x_{6} \right) \oplus \left( x_{1}\vee x_{4}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{4}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{4}\vee x_{9} \right) \oplus \\ \left( x_{1}\vee x_{4}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{5}\vee x_{6} \right)
\oplus \left( x_{1}\vee x_{5}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{1}\vee x_{5}\vee x_{9} \right) \\
\oplus \left( x_{1}\vee x_{5}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{6}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{6}\vee x_{9} \right) \\ \oplus \left( x_{1}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{7}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{7}\vee x_{9} \right) \oplus \left( x_{1}\vee x_{7}\vee x_{10} \right) \oplus \\ \left( x_{1}\vee x_{8}\vee x_{9} \right)
\oplus \left( x_{1}\vee x_{8}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{2}\vee x_{3}\vee x_{4} \right)
\oplus \left( x_{2}\vee x_{3}\vee x_{5} \right) \\ \oplus \left( x_{2}\vee x_{3}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{3}\vee x_{7} \right)
\oplus \left( x_{2}\vee x_{3}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{3}\vee x_{9} \right) \oplus \\ \left( x_{2}\vee x_{3}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{4}\vee x_{5} \right) \oplus \left( x_{2}\vee x_{4}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{4}\vee x_{7} \right)
\oplus \left( x_{2}\vee x_{4}\vee x_{8} \right) \\ \oplus \left( x_{2}\vee x_{4}\vee x_{9} \right) \oplus \left( x_{2}\vee x_{4}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{4}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{7} \right) \\
\oplus \left( x_{2}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{9} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{2}\vee x_{6}\vee x_{8} \right) \\ \oplus \left( x_{2}\vee x_{6}\vee x_{9} \right)
\oplus \left( x_{2}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{2}\vee x_{7}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{7}\vee x_{9} \right)
\oplus \left( x_{2}\vee x_{7}\vee x_{10} \right) \\ \oplus \left( x_{2}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{2}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{5} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{6} \right) \\
\oplus \left( x_{3}\vee x_{4}\vee x_{7} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{8} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{9} \right)
\oplus \left( x_{3}\vee x_{4}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{5}\vee x_{6} \right) \\ \oplus \left( x_{3}\vee x_{5}\vee x_{7} \right)
\oplus \left( x_{3}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{3}\vee x_{5}\vee x_{9} \right) \oplus \left( x_{3}\vee x_{5}\vee x_{10} \right)
\oplus \left( x_{3}\vee x_{6}\vee x_{7} \right) \\ \oplus \left( x_{3}\vee x_{6}\vee x_{8} \right) \oplus \left( x_{3}\vee x_{6}\vee x_{9} \right))
\oplus \left( x_{3}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{7}\vee x_{8} \right) \\ \oplus \left( x_{3}\vee x_{7}\vee x_{9} \right)
\oplus \left( x_{3}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{3}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{3}\vee x_{9}\vee x_{10} \right) \\ \oplus \left( x_{4}\vee x_{5}\vee x_{6} \right) \oplus \left( x_{4}\vee x_{5}\vee x_{7} \right)
\oplus \left( x_{4}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{4}\vee x_{5}\vee x_{9} \right) \oplus \left( x_{4}\vee x_{5}\vee x_{10} \right) \\
\oplus \left( x_{4}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{4}\vee x_{6}\vee x_{8} \right) \oplus \left( x_{4}\vee x_{6}\vee x_{9} \right)
\oplus \left( x_{4}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{4}\vee x_{7}\vee x_{8} \right) \\ \oplus \left( x_{4}\vee x_{7}\vee x_{9} \right)
\oplus \left( x_{4}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{4}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{4}\vee x_{8}\vee x_{10} \right) \\
\oplus \left( x_{4}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{5}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{5}\vee x_{6}\vee x_{8} \right)
\oplus \left( x_{5}\vee x_{6}\vee x_{9} \right) \oplus \left( x_{5}\vee x_{6}\vee x_{10} \right) \\ \oplus \left( x_{5}\vee x_{7}\vee x_{8} \right)
\oplus \left( x_{5}\vee x_{7}\vee x_{9} \right) \oplus \left( x_{5}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{5}\vee x_{8}\vee x_{9} \right)
\oplus \left( x_{5}\vee x_{8}\vee x_{10} \right) \\ \oplus \left( x_{5}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{7}\vee x_{8} \right)
\oplus \left( x_{6}\vee x_{7}\vee x_{9} \right) \oplus \left( x_{6}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{8}\vee x_{9} \right) \\
\oplus \left( x_{6}\vee x_{8}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{6}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{6}\vee x_{9}\vee x_{10} \right) \\ \oplus \left( x_{7}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{7}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{7}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{8}\vee x_{9}\vee x_{10} \right) \\
[/latex]

Входные данные
Содержит 10 чисел x1,x2,x3,x4,x5,x6,x7,x8,x9 и x10. Каждое из них равно 0 или 1.

Выходные данные
Вывести единственное значение f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10).

Тесты

Входные данные Выходные данные
1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1

Решение

Рассмотрим все возможные пары и тройки разных переменных из этих десяти (всего существует 45 пар и 120 троек).Данная формула реализует функцию f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10).В указанной формуле бинарные операции обозначаются «[latex]\vee[/latex]» и «[latex]\oplus[/latex]», где «[latex]\vee[/latex]»-логическое или , а «[latex]\oplus[/latex]»-исключающее или

Ссылки

E-olymp
Ideone