e-olymp 1154. Кружок хорового пения

Задача

В некотором учебном заведении функционирует кружок хорового пения. Начало кружка всегда происходит единообразно: по сигналу руководителя кружка все [latex]N[/latex] участников становятся в круг и каждый [latex]M[/latex]-й для распевки поёт гамму.

Руководитель кружка заметил, что размять голосовые связки не всегда удаётся всем участникам кружка. По заданным [latex]N[/latex] и [latex]M[/latex] помогите ему определить, или в очередной раз в разминке примут участие все участники хора.

Входные данные

Входные данные состоят из нескольких тестовых случаев. Каждый тестовый случай расположен в отдельной строке и содержит два целых числа [latex]N[/latex] и [latex]M[/latex]. ([latex]1 ≤ N, M ≤ 103[/latex]).

Выходные данные

Для каждого тестового случая в отдельной строке выведите «YES», если в разминке примут участие все участники хора, в противном случае выведите «NO».

Тесты

Входные данные Выходные данные
1000 1000
1 1
NO
YES
2 5
3 7
14 15
49 37
YES
YES
YES
YES
14 16
891 6
441 9
777 111
NO
NO
NO
NO
4 1
6 3
YES
NO

Решение задачи

Пусть у нас есть [latex]N[/latex] певцов. Пронумеруем их по порядку от [latex]0[/latex] до [latex]N — 1[/latex]. Распевается каждый [latex]M[/latex]-й. И пусть НОД ([latex]M, N) = k \geq 2[/latex]. Тогда, например, [latex]k — 1[/latex]-ый певец никогда не распоется. На рисунке ниже приведен пример. [latex]6[/latex] певцов,  распевается каждый [latex]2[/latex], начиная из верхнего левого угла при смене по часовой стрелке. Переливающимся кружочком обозначен поющий в данный момент певец.


Докажем, что если [latex]M[/latex] и [latex]N[/latex] взаимно просты, то все участники распоются. Для начала заметим, что при [latex]i[/latex]-ой смене (где [latex]i[/latex] некоторое натуральное число) очередь вернется к участнику, с которого распевка начиналась,то есть смена циклическая. Поскольку НОД ([latex]M, N) = 1 [/latex], то НОК ([latex]M, N) = M*N [/latex], то есть распевающий сменится [latex]N[/latex] раз для завершения цикла. Покажем, что ни один из певцов не споет более [latex]1[/latex] раза. Пусть есть некоторый [latex]k[/latex]-ый распевающий, очередь которого наступила более [latex]1[/latex] раза за время цикла. Однако, как и для первого распевающего, очередь для [latex]k[/latex] наступит через [latex]N[/latex] смен, то есть после завершения цикла. Получили опровержение. Значит каждый распоется не более [latex]1[/latex] раза. Теперь, учитывая количество смен, получим, что каждый распоется ровно [latex]1[/latex] раз. В случае, когда НОД ([latex]M, N) \geq 2 [/latex] получим, что за цикл распоется менее, чем [latex]N[/latex] участников хора.

 

Ссылки

Условие задачи на сайте  E-Olymp

код задачи на Ideone

Related Images:

KM194. Взаимно простые числа

Задача

Даны два взаимно простых натуральных числа [latex]a[/latex] и [latex]b[/latex]. Рассмотрим множество [latex]M[/latex] целых чисел, представимых в виде [latex][ax+by],[/latex] где [latex]x[/latex] и [latex]y[/latex] — целые неотрицательные числа. Каково наибольшее целое число [latex]c[/latex], не принадлежащее множеству [latex]M[/latex]?

Входные данные

[latex]a[/latex] и [latex]b[/latex] — два взаимно простых натуральных числа.

Выходные данные

[latex]c[/latex] — наибольшее целое число c, не принадлежащее множеству [latex]M[/latex].

Тесты

Входные данные Выходные данные
[latex]a[/latex] [latex]b[/latex] [latex]c[/latex]
5 3 7
2 1 -1
3 2 1

Код программы на C++

Код программы на Java

Решение

Нарисуем на плоскости систему координат [latex]Oxy[/latex] и сформулируем нашу задачу на геометрическом языке. Каждую пару целых чисел [latex]\left(x,y\right)[/latex] мы будем называть «целой точкой» и изображать красной точкой, если обе её координаты неотрицательны [latex]\left(x\geq0, y\geq0\right)[/latex], и синей точкой — если хотя бы одна координата отрицательна.

Взаимно простые натуральные числа [latex]a[/latex] и [latex]b[/latex] мы считаем фиксированными (для примера возьмём [latex]a=5, b=3[/latex]). Для каждого [latex]n[/latex] уравнение [latex]ax+by=n[/latex] определяет, как известно, прямую. Обозначим её через [latex]l_{n}[/latex]. Разумеется, все прямые [latex]l_{n}[/latex] параллельны друг другу. Пусть [latex]n[/latex] — целое. Будем считать прямую [latex]l_{n}[/latex] красной, если она проходит хотя бы через одну красную точку, и синей — в противном случае. Мы должны выяснить, каково наибольшее [latex]c[/latex], которому соответствует синяя прямая [latex]l_{с}[/latex], и доказать, что тогда из двух прямых [latex]l_{n}[/latex] и [latex]l_{c-n}[/latex] одна-синяя и одна-красная ([latex]n[/latex] — любое целое число).
Мы будем пользоваться в нашем решении перемещениями плоскости, которые отображают множество целых точек на себя и одновременно каждую прямую [latex]l_{n}[/latex] переводят в ту же самую или некоторую другую прямую [latex]l_{\acute{n}}[/latex] из нашего семейства. Это, во-первых, параллельные переносы на любой вектор [latex]\left(p, q\right)[/latex] с целыми [latex]p[/latex] и [latex]q:[/latex] [latex]\left(x,y\right)|\dashrightarrow \left(x+p, y+q\right),[/latex] и, во-вторых, повороты на [latex]180^{\circ}[/latex] (или, что то же самое, симетрии относительно точки) с любыми центрами [latex]\left(\frac{p}{2}, \frac{q}{2}\right)[/latex], где [latex]p[/latex] и [latex]q[/latex] — целые: [latex]\left(x,y\right)|\dashrightarrow \left(p-x, q-y\right).[/latex] Докажем, что на каждой прямой [latex]l_{n}[/latex] целые точки встречаются через равные промежутки.
Лемма. Если [latex]\left(x_{0},y_{0}\right)[/latex] — целая точка на прямой [latex]l_{n}[/latex], то ближайшими к ней целыми точками на [latex]l_{n}[/latex] будут [latex]\left(x_{0}-b,y_{0}+a\right)[/latex] и [latex]\left(x_{0}+b,y_{0}-a\right)[/latex] ([latex]a[/latex] и [latex]b[/latex] взаимно просты).
Рассмотрим прямую [latex]l_{0}[/latex], проходящую через [latex]\left(0, 0\right)[/latex]. Пусть [latex]\left(-b_{1}, a_{1}\right)[/latex] — ближайшая к [latex]\left(0, 0\right)[/latex] целая точка [latex]l_{0}[/latex] такая, что [latex]b_{1}>0[/latex], [latex]a_{1}>0[/latex] (мы ещё не знаем, что [latex]b_{1}=b, a_{1}=a[/latex]), [latex]\left(x_{0}, y_{0}\right)[/latex] — целая точка [latex]l_{n}[/latex]. При переносе на вектор [latex]\left(x_{0}, y_{0}\right)[/latex] отрезок прямой [latex]l_{0}[/latex] от [latex]\left(0, 0\right)[/latex] до [latex]\left(-b_{1}, a_{1}\right)[/latex] перейдет в отрезок [latex]l_{n}[/latex] от [latex]\left(x_{0}, y_{0}\right)[/latex] до [latex]\left(x_{0}-b_{1}, y_{0}+a_{1}\right)[/latex] будет ближайшей к [latex]\left(x_{0}, y_{0}\right)[/latex] точкой [latex]l_{n}[/latex] сверху. Точно так же при переносе на вектор [latex]\left(x_{0}+b_{1}, y_{0}-a_{1}\right)[/latex] — тот же отрезок прямой [latex]l_{0}[/latex] перейдёт в отрезок прямой [latex]l_{n}[/latex] от [latex]\left(x_{0}+b_{1}, y_{0}-a_{1}\right)[/latex] до [latex]\left(x_{0}, y_{0}\right)[/latex]. Следовательно, и на этом отрезке целыми точками будут только его концы.
Отсюда уже следует, то на любой прямой [latex]l_{n}[/latex] (уесли на ней есть хоть одна целая точка) промежуток между соседними целыми точками один и тот же: [latex]a_{1}[/latex] единиц по оси [latex]Oy[/latex] и [latex]b_{1}[/latex] — по оси [latex]Ox[/latex]. Это, в частности, относится и к прямой [latex]l_{0}[/latex]. Поскольку [latex]\left(-b, a\right)[/latex] принадлежит [latex]l_{0}[/latex], то отсюда следует, что [latex]b=db_{1}, a=da_{1}[/latex], где [latex]d[/latex] — некоторое целое число. Но числа [latex]a[/latex] и [latex]b[/latex] по условию взаимно просты. Значит, [latex]d=1[/latex], то есть [latex]a=a_{1}, b=b_{1}[/latex]. Лемма доказана.
Из этой леммы следует, что каждая прямая [latex]l_{n}[/latex], где [latex]n[/latex] — целое, переходит ровно через одну точку внутри полосы [latex]0\leq x\leq b-1[/latex]. При этом, очевидно, если прямая красная, то есть где-то переходит через красную точку, то её целая точка в выделенной полосе тоже будет красной (а точка синей прямой, разумеется, синяя).
Теперь заметим, что при симетрии относительно точки [latex]\left(\frac{b-1}{2} -\frac{1}{2}\right)[/latex] [latex]\left(x,y\right)\mapsto\left(\acute{x}, \acute{y}\right) =\left(b-1-x, -1-y\right)[/latex], полоса [latex]0\leq x\leq b-1[/latex] переходит в себя, причем красные точки переходят в синие, и наоборот. Прямая [latex]l_{n}[/latex] после этой симметрии переходит в прямую [latex]l_{ab-a-b-n}[/latex]: если [latex]ax+by=n[/latex], то [latex]a\acute{x}+b\grave{y}=a\left(b-1-x\right)+b\left(-1-y\right)=ab-a-b-n.[/latex] (Через центр симметрии, где [latex]a\left( \frac{b-1}{2}\right)+b\left(- \frac{1}{2}\right) = \frac{ab-a-b}{2},[/latex] ни одна из наших прямых может и не проходить.)
Ясно, что самая нижняя красная прямая — это [latex]l_{0}[/latex]. Следовательно, самая верхняя синяя прямая — это [latex]l_{ab-a-b}.[/latex] Итак, наибольшее число, не принадлежащее множеству, — это [latex]c=ab-a-b,[/latex] и из двух чисел [latex]n[/latex] и [latex]c-n[/latex] одно принадлежит [latex]M[/latex], а другое — нет.

Ссылки

Ideone C++;
Ideone Java;
Решение задачи Журнал «Квант» №11 г.1973 (стр. 44-45);
Условие задачи Журнал «Квант» №3 г.1973 (стр. 35).

Related Images:

A324. Делители одного числа, взаимно простые с другим

Задача

Даны целые числа [latex]p[/latex] и [latex]q[/latex]. Получить все делители числа [latex]q[/latex], взаимно простые с числом [latex]p[/latex].

Тесты

[latex]q[/latex] [latex]p[/latex] Все делители числа [latex]q[/latex], взаимно простые с числом [latex]p[/latex]
40 15 1 2 4 8
87 3 1 29

Код программы

Код программы на С++

Код программы на Java

Решение

Воспользуемся рекурсивной реализацией алгоритма Евклида. Пусть [latex]m[/latex] и [latex]n[/latex] — не равные нулю целые неотрицательные числа, и пусть [latex]m\geq n[/latex]. Тогда, если [latex]n=0[/latex], [latex]GCD(n,m)=m[/latex], а если [latex]n\neq 0[/latex], то для числе [latex]m[/latex], [latex]n[/latex] и [latex]k[/latex], где [latex]k[/latex] — остаток от деления [latex]m[/latex] и [latex]n[/latex], выполняется равенство [latex]GCD(m,n)=GCD(n,k)[/latex].
Для нахождения делителей числа [latex]q[/latex] взаимно простых с [latex]p[/latex], программа проверяет остатки от деления [latex]q[/latex] на все числа [latex]i[/latex] от [latex]1[/latex] до [latex]q[/latex]. Если остаток равен нулю, то число [latex]i[/latex] является делителем [latex]q[/latex]. Для каждого такого числа выполняется поиск наибольшего общего делителя (НОД — Greatest common divisor, GCD) [latex]i[/latex] и [latex]p[/latex] по алгоритму Евклида. Если найденный наибольший делитель равен 1, то числа [latex]i[/latex] и [latex]p[/latex] взаимно простые.

Ссылки

Условие задачи
Решение задачи на сайте Ideone.com (C++)
Решение задачи на сайте Ideone.com (Java)

Related Images: