e-olymp 1078. Степень строки

Задача

Обозначим через [latex]a \cdot b[/latex] конкатенацию строк [latex]a[/latex] и [latex]b[/latex].

Например, если [latex]a =[/latex]«abc» и [latex]b =[/latex]«def» то [latex]a \cdot b =[/latex]«abcdef».

Если считать конкатенацию строк умножением, то можно определить операцию возведения в степень следующим образом:
[latex]a^{0} =[/latex]«» (пустая строка)
[latex]a^{n+1} = a \cdot a^{n}[/latex]

По заданной строке [latex]s[/latex] необходимо найти наибольшее значение [latex]n[/latex], для которого [latex]s = a^{n}[/latex] для некоторой строки [latex]a[/latex].

Входные данные

Каждый тест состоит из одной строки [latex]s[/latex], содержащей печатные (отображаемые) символы. Строка [latex]s[/latex] содержит не менее одного и не более миллиона символов.

Выходные данные

Для каждой входной строки [latex]s[/latex] вывести в отдельной строке наибольшее значение [latex]n[/latex], для которого [latex]s[/latex] = [latex]a^{n}[/latex] для некоторой строки [latex]a[/latex].

Тесты

Входные данные Выходные данные
abcabc
gcdgcd
gcgcgc
gggggg
hhhh
2
2
3
6
4
BbbbBbbbBbbb
dogdogdog
aaaaaaaa
cstring
3
3
8
1

Код программы (c-string)

Решение задачи (c-string)

Из условия следует, что степень строки определяется максимальным числом одинаковых подстрок. В таком случае степень строки является одним из делителей длины этой строки, и очевидно, что максимальная степень строки будет обратно пропорциональна максимальной длине подстроки.

Для решения поставленной задачи используем функцию cstringpow, которая в качестве аргумента принимает строку, и возвращает её степень. Реализуем эту функцию следующим образом: вначале ищем делители значения переменной size (с использованием счётчика i в цикле), в которую было предварительно была сохранена длина строки, полученная функцией strlen. Числа, которые будут получатся из выражения size/i, будут предполагаемой максимальной степенью строки. Естественно, они будут находится в порядке убывания.
Найденные счётчиком делители будут представлять из себя длины подстрок, на которые можно полностью разбить данную строку. Затем, используя функцию strncmp, сравниваем каждую подстроку. В случае, если какие-то из подстрок не совпали, то предположенная максимальная степень строки не является верной, и необходимо искать следующую. Иначе (если несовпадающих подстрок не найдено, то) значение выражения size/i будет ответом на поставленную задачу. В крайнем случае, необходимое разбиение строки не будет найдено, и тогда совокупностью одинаковых подстрок будет сама строка, а следовательно её степень равна [latex]1[/latex].

Код программы (string)

Решение задачи (string)

Решение задачи с использованием класса string аналогично. Единственное отличие — замена функций strlen и strncmp, предназначенных для работы с c-string, на эквивалентные им методы класса string size и compare.

Ссылки

e-olymp 131. Слова

Задача
Из слова «молоко» можно составить слово «коло». Сколько слов из заданного словаря можно составить, используя буквы заданного слова, причем каждую букву можно использовать не более одного раза.

Тесты

Входные данные Выходные данные
молоко
4
мило
коло
коліно
око
2
приветствие
8
ветер
треск
спирт
трепет
перерыв
север
текст
привести
5

Код программы

Решение
Создаем вектор [latex]D[/latex], в котором будем хранить количество каждого символа в слове, и обнуляем его. Тип [latex]char[/latex] вмещает максимум [latex]256[/latex] значений (в диапазоне от [latex]-127[/latex] до [latex]126[/latex]). Класс [latex]string[/latex] состоит из символов типа [latex]char[/latex], поэтому для того, чтобы «вернуть» значения этих символов к положительным (в чём возникает необходимость при обращении к элементам вектора), к ним прибавляется [latex]127[/latex].
Потом считаем число каждого символа в слове. Создаем переменную, в которой будем хранить число слов из словаря, которое можно составить, используя символ первого входного слова. Предполагаем, что слово [latex]words[/latex] составить можно ([latex]words=true[/latex]). Считаем использованные символы из первой входной строки и, если вдруг число стало отрицательным, то слово составить нельзя, обнуляем переменную [latex]words[/latex] и останавливаем цикл. К переменной [latex]rez[/latex] прибавляем переменную [latex]words[/latex] и выводим [latex]rez[/latex].

Ссылки
Код на ideone.com
Задача с сайта e-olymp.com.
Засчитанное решение.

e-olymp 6128. Простой дек

Задача

Реализуйте структуру данных «дек». Напишите программу, содержащую описание дека и моделирующую работу дека, реализовав все указанные здесь методы. Программа считывает последовательность команд и в зависимости от команды выполняет ту или иную операцию. После выполнения каждой команды программа должна вывести одну строчку. Возможные команды для программы:

push_front

Добавить (положить) в начало дека новый элемент. Программа должна вывести ok.

push_back

Добавить (положить) в конец дека новый элемент. Программа должна вывести ok.

pop_front

Извлечь из дека первый элемент. Программа должна вывести его значение.

pop_back

Извлечь из дека последний элемент. Программа должна вывести его значение.

front

Узнать значение первого элемента (не удаляя его). Программа должна вывести его значение.

back

Узнать значение последнего элемента (не удаляя его). Программа должна вывести его значение.

size

Вывести количество элементов в деке.

clear

Очистить дек (удалить из него все элементы) и вывести ok.

<strong>exit

Программа должна вывести bye и завершить работу.

Гарантируется, что количество элементов в деке в любой момент не превосходит [latex]100[/latex]. Все операции:

pop_front,
pop_back,
front,
back
всегда корректны.

Входные данные

Описаны в условии. См. также пример входных данных.

Выходные данные

Описаны в условии. См. также пример входных данных.

Тесты

Входные данные Выходные данные
push_back 3
push_front 14
size
clear
push_front 1
back
push_back 2
front
pop_back
size
pop_front
size
exit
ok
ok
2
ok
ok
1
ok
1
2
1
1
0
bye

Код программы

Решение

Считываем строки из входного потока в случае с size, back, front, pop_front, pop_back и clear просто выводим и вызываем соответствующие функции. А в случае с push_front и push_back мы вызываем ввод для функции. В exit вызываем функцию [latex]return[/latex] [latex]0[/latex] для остановки программы.

Ссылки

Ideone;
e-olymp.

e-olymp 1075. Умножение многочленов

Задача с сайта e-olymp.com.
Засчитанное решение.

Условие задачи

Вводится в символьной форме два многочлена от [latex]x[/latex] с целыми коэффициентами. Вывести их произведение в порядке убывания степеней — также в символьной форме. Степень исходных многочленов не более [latex]10[/latex], коэффициенты исходных многочленов по модулю не более [latex]{ 10 }^{ 4 }[/latex].

Входные данные

В двух строках находятся многочлены.

Выходные данные

В единственной строке выводится многочлен.

Тесты

Входные данные Выходные данные
1 0
0
0
2 x+1
x-1
x^2-1
3 -5
x^2+x+x-2x^3
10x^3-5x^2-10x
3 x^10+2x^9+3x^8
-1
-x^10-2x^9-3x^8
4 x^10+2x^9+3x^8
0
0
5 x^10+5x^2
x^3-4x
x^13-4x^11+5x^5-20x^3

Решение с использованием класса string

Код программы

Нажмите, чтобы выполнить его на ideone.com.

Описание

Сначала в функции main объявляются две строки a и b. В них водятся исходные два многочлена. Но в форме строк, особенно учитывая, что подобные слагаемые не всегда приведены, умножать многочлены не удобно. Потому объявляются три вектора: a_decomposed, b_decomposed и c_decomposed. Первые два имеют размер [latex]11[/latex], поскольку в условии сказано, что многочлены могут быть от нулевой до десятой степени включительно. В них элемент с индексом [latex]i[/latex] равняется коэффициенту при слагаемом многочлена, в котором [latex]x[/latex] имеет степень [latex]i[/latex]. Они заполняются при помощи функции decompose. В ней при помощи функции analyze отдельно анализируется каждое слагаемое многочлена, и результат заносится в вектор. c_decomposed хранит коэффициенты многочлена, полученного умножением двух исходных. Значения его элементов вычисляются при помощи функции multiplicate. После в ходе работы функции compose многочлен в требуемой форме записывается в строку c. Далее, если её первым символом является [latex]+[/latex], он удаляется из строки. Наконец, если c — непустая строка, она выводится. Иначе выводится [latex]0[/latex].

Решение с использованием c-string

Код программы

Нажмите, чтобы выполнить его на ideone.com.

Описание

Алгоритм решения тот же. Следует отметить: поскольку объекты типа char* «не знают» свою длину, и в силу других причин, в некоторых местах программы используются «магические числа». Однако они не взяты случайно, а продиктованы условием задачи (к примеру, тем, что максимальная степень исходных многочленов — [latex]10[/latex] и т.п.). Только подходящее значение переменной max_number_of_symbols было найдено эмпирически.

ASCII ART

Task

In stations and airports you often see this type of screen:

Have you ever asked yourself how it might be possible to simulate this display on a good old terminal? We have: with ASCII art!

Your mission is to write a program that can display a line of text in ASCII art in a style you are given as input.

Input

Line 1: the width L of a letter represented in ASCII art. All letters are the same width.
Line 2: the height H of a letter represented in ASCII art. All letters are the same height.
Line 3: the line of text T, composed of N ASCII characters.
Following H lines: the string of characters ABCDEFGHIJKLMNOPQRSTUVWXYZ? Represented in ASCII art.

[latex]0 < [/latex] L[latex] < 30[/latex] [latex]0 < [/latex] H[latex] < 30[/latex] [latex]0 < [/latex] N[latex] < 200[/latex]

Output

The text T in ASCII art.
The characters a to z are shown in ASCII art by their equivalent in upper case.
The characters that are not in the intervals [a-z] or [A-Z] will be shown as a question mark in ASCII art.

Tests

Input Output
1
1
Encoding using ASCII? Hah!
?ZYXWVUTSRQPONMLKJIHGFEDCBA
WNYMXSNUAGISNUA?IYSSAAT?TA

Codes of the program

Solution of the task

After saving the string, we can convert the task to «semi-stream processing». After we read and save the first line of ASCII characters into alphabet array, we start to print the tops of the ASCII letters. Then the same procedure is repeated on the following lines, and new parts of ASCII letters are read over the old ones into alphabet.

Links

There is no Spoon — Episode 1

Task

The Goal

The game is played on a rectangular grid with a given size. Some cells contain power nodes. The rest of the cells are empty.

The goal is to find, when they exist, the horizontal and vertical neighbors of each node.

Rules

To do this, you must find each [latex]\left( x1, y1 \right)[/latex] coordinates containing a node, and display the [latex]\left(x2, y2\right)[/latex] coordinates of the next node to the right, and the [latex]\left(x3, y3\right)[/latex] coordinates of the next node to the bottom within the grid.

If neighbor does not exist, you must output the coordinates [latex]\left(-1, -1\right)[/latex] instead of [latex]\left(x2, y2\right)[/latex] and/or [latex]\left(x3, y3\right)[/latex].

You lose if:

  • You give an incorrect neighbor for a node.
  • You give the neighbors for an empty cell.
  • You compute the same node twice.
  • You forget to compute the neighbors of a node.

Game input

The program must first read the initialization data from standard input. Then, provide to the standard output one line per instruction.

Initialization input

Line 1: one integer width for the number of cells along the x axis.

Line 2: one integer height for the number of cells along the y axis.

Next height lines: A string line containing width characters. A dot . represents an empty cell. A zero 0 represents a cell containing a node.

[latex]0 <[/latex] width[latex]\le 30[/latex]
[latex]0 <[/latex] height[latex]\le 30[/latex]

Output for one game turn

One line per node. Six integers on each line: x1 y1 x2 y2 x3 y3 Where:

  • ( x1, y1) the coordinates of a node.
  • ( x2, y2) the coordinates the closest neighbor on the right of the node.
  • ( x3, y3) the coordinates the closest bottom neighbor.
[latex]0 \le[/latex] x1[latex]<[/latex] width
[latex]0 \le[/latex] y2[latex]<[/latex] height
[latex]-1 \le[/latex] x2, x3[latex]<[/latex] width
[latex]-1 \le[/latex] y2, y3[latex]<[/latex] height
Alloted response time to first output line [latex]\le 1[/latex]s.
Response time between two output lines [latex]\le 100[/latex]ms.

Tests

Input Output
2 2
00
0.
0 0 1 0 0 1
1 0 -1 -1 -1 -1
0 1 -1 -1 -1 -1
4 4
.0..
.000
000.
..0.
1 0 -1 -1 1 1
1 1 2 1 1 2
2 1 3 1 2 2
3 1 -1 -1 -1 -1
0 2 1 2 -1 -1
1 2 2 2 -1 -1
2 2 -1 -1 2 3
2 3 -1 -1 -1 -1

The code of the program

Solution of the task

First of all, we must pay attention, that we have to find the closest neighbor. It doesn’t mean, that if there is no neighbor on adjacent cells, then the answer will be negative, because the neighbor may be further. This leads to the fact, that the task can not be completed without memorization of the whole list of cells.

After storing every string in array, the task becomes simple: we go using the cycle through every cell, and if the cell contains a node, then we launch two cycles from it in two directions (to the right and to the bottom), and assume there are no neighbors with assigning value -1 to both variables ansX and ansY. If there will be no nodes found, the value will remain the same, otherwise variables will take values of the node coordinates. In any case, the result will be correct.

This process is optimized by usage of the following: the [latex]x[/latex] coordinate of the closest right neighbor (or the value of width) is saved in a variable x2. Whether we find a neighbor or no, we can start the further horizontal search right from the coordinate x2, because empty cells must be skipped anyway.

Links