e-olymp 333. Детская железная дорога-2

Антон Куперман
Антон Куперман

Latest posts by Антон Куперман (see all)

Задача

После того как мама запретила Витэку заниматься неизвестным языком и забрала у него все кубики, не относящиеся к латинскому алфавиту, он нашел для себя новое занятие на детской железной дороге. Для начала он построил несколько депо, куда мог отправлять лишние вагончики, правда забирать их оттуда он не научился. И вот, имея некий запас кубиков с большими буквами латинского алфавита, он решил тайком от мамы заняться изучением английского языка. Но так как даже словарем с не родным английским языком мама запретила ему пользоваться, Витэк решил составить свой словарь.

В словарь он вначале заносил слово, образованное из начального расположения кубиков с буквами на вагончиках, а далее новые образовывал путем отцепления некоторого количества букв либо в начале состава, либо в конце, либо с обеих сторон, каждый раз используя за начальное первичное расположение кубиков.

Сколько всего разных слов может быть в таком необычном «английском» словаре Витэка?

Тесты

Входные данные
Выходные данные
ALPHABET 35
AAAA 4
UNIVERSITY

54
ABABABABC

24

Код

Решение

Казалось бы, задачу можно решить простым циклом. Ведь в 6-буквенном слове: 6 однобуквенных слов, 5 двубуквенных и т.д. Однако очевидной становится проблема повторения,причем не только повторений букв, но и повторений подстрок, что изрядно усложняет наше решение. Создадим вектор, состоящий из строк, куда мы будем добавлять все подстроки строки из входного потока. Отсортируем полученный вектор. Это нужно для того чтобы одинаковые элементы шли рядом с друг другом. Тогда мы можем использовать функцию unique(), которая удалит из вектора все повторяющиеся элементы, кроме одного. Для того, чтобы провести resize() вектора нам понадобится итератор, который мы приравняем к функции unique(). После resize() останется только вывести размер вектора и прибавить к нему единицу, так как само слово не является подстрокой.

Ссылки

1.Код на ideone

2.Условие на e-olymp

A272. Количество осадков

Задача

Даны действительные числа [latex]a_{1}, a_{2}, …, a_{n}[/latex] – количество осадков (в миллиметрах), выпавших в Москве в течение [latex]n[/latex] лет. Вычислить среднее количество осадков [latex]average[/latex] и отклонение от среднего для каждого года [latex]d_{1}, d_{2}, …, d_{n}[/latex].

Входные данные: 

Последовательность действительных чисел.

Выходные данные:

Среднее количество осадков [latex]average[/latex].
Последовательность действительных чисел [latex]d_{1}, d_{2}, …, d_{n}[/latex] — отклонение от среднего.

Тесты

 №  Входные данные  Выходные данные
 1  0 0 0 0 0 0 1 0 0 0  0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.1 0.1 0.1
 2  1.23 2.34 3.45 4.56 5.67  3.45
2.22 1.11 0 1.11 2.22
 3  234.109 4655.15 43.629 14.109  1236.75
1002.64 3418.4 1193.12 1222.64
 4  5 5 5 5 5 5  5
0 0 0 0 0 0

Код программы

Решение

В цикле считываем числа из входного потока и прибавляем их к переменной [latex]average[/latex] (изначально [latex]average=0[/latex]), а также помещаем их в вектор [latex]v[/latex]. Далее делим [latex]average[/latex] на количество элементов в векторе, таким образом получим среднее количество осадков. Затем при помощи цикла поочередно будем выводить отклонение от среднего количества осадков для каждого года. Отклонением от среднего будет абсолютная величина разности соответствующего элемента вектора [latex]v[/latex] и среднего значения [latex]average[/latex].

Ссылки

e-olymp 1075. Умножение многочленов

Задача с сайта e-olymp.com.
Засчитанное решение. (C++)
Засчитанное решение. (Java)

Условие задачи

Вводится в символьной форме два многочлена от [latex]x[/latex] с целыми коэффициентами. Вывести их произведение в порядке убывания степеней — также в символьной форме. Степень исходных многочленов не более [latex]10[/latex], коэффициенты исходных многочленов по модулю не более [latex]{ 10 }^{ 4 }[/latex].

Входные данные

В двух строках находятся многочлены.

Выходные данные

В единственной строке выводится многочлен.

Тесты

Входные данные Выходные данные
1 0
0
0
2 x+1
x-1
x^2-1
3 -5
x^2+x+x-2x^3
10x^3-5x^2-10x
3 x^10+2x^9+3x^8
-1
-x^10-2x^9-3x^8
4 x^10+2x^9+3x^8
0
0
5 x^10+5x^2
x^3-4x
x^13-4x^11+5x^5-20x^3

Решение с использованием класса string

Код программы

Нажмите, чтобы выполнить его на ideone.com.

Описание

Сначала в функции main объявляются две строки a и b. В них водятся исходные два многочлена. Но в форме строк, особенно учитывая, что подобные слагаемые не всегда приведены, умножать многочлены не удобно. Потому объявляются три вектора: a_decomposed, b_decomposed и c_decomposed. Первые два имеют размер [latex]11[/latex], поскольку в условии сказано, что многочлены могут быть от нулевой до десятой степени включительно. В них элемент с индексом [latex]i[/latex] равняется коэффициенту при слагаемом многочлена, в котором [latex]x[/latex] имеет степень [latex]i[/latex]. Они заполняются при помощи функции decompose. В ней при помощи функции analyze отдельно анализируется каждое слагаемое многочлена, и результат заносится в вектор. c_decomposed хранит коэффициенты многочлена, полученного умножением двух исходных. Значения его элементов вычисляются при помощи функции multiplicate. После в ходе работы функции compose многочлен в требуемой форме записывается в строку c. Далее, если её первым символом является [latex]+[/latex], он удаляется из строки. Наконец, если c — непустая строка, она выводится. Иначе выводится [latex]0[/latex].

Решение с использованием c-string

Код программы

Нажмите, чтобы выполнить его на ideone.com.

Описание

Алгоритм решения тот же. Следует отметить: поскольку объекты типа char* «не знают» свою длину, и в силу других причин, в некоторых местах программы используются «магические числа». Однако они не взяты случайно, а продиктованы условием задачи (к примеру, тем, что максимальная степень исходных многочленов — [latex]10[/latex] и т.п.). Только подходящее значение переменной max_number_of_symbols было найдено эмпирически.

Решение на Java

Код программы

Нажмите, чтобы выполнить его на ideone.com.

А273. Центр тяжести системы

Задача. Задача из сборника задач по программированию С.А.Абрамова за 2000 год.
Система из 25 материальных точек в пространстве задана с помощью последовательности действительных чисел [latex]x_{1}, y_{1}, z_{1}, p_{1}, x_{2}, y_{2}, z_{2}, p_{2},\ldots,x_{25}, y_{25}, z_{25}, p_{25}[/latex], где [latex]x_{i}, y_{i}, z_{i}[/latex] — координаты [latex]i[/latex]-ой точки, а [latex]p_{i}[/latex] — ее вес ([latex]i=1,2,\ldots,25[/latex]). Получить координаты центра тяжести системы, а также расстояние от центра тяжести до всех точек системы.

Входные данные:
[latex]x, y, z, p[/latex] — координаты и вес точки.

Выходные данные:
[latex]sum(x,y,z)[/latex] — координаты центра тяжести системы, [latex]l[/latex] — расстояние от центра тяжести до одной из точек.

Тесты:

Входные данные Выходные данные
[latex]x[/latex] [latex]y[/latex] [latex]z[/latex] [latex]p[/latex] [latex]sum[/latex] [latex](x[/latex] [latex]y[/latex] [latex]z)[/latex] [latex]l[/latex]
2 2 1 2
3 1 2 1
2.33333 1.66667 1.33333 0.57735
1.1547
7 10 5 20
1 0 3 1
43 50 6 3
0 9 0 200
4 8 15 66
1.84138 9.23448 3.83103 5.34452
9.3099
57.9704
4.25705
11.4424

Код программы на С++

Код программы на Java

Решение
В цикле «[latex]while[/latex]» читаем числа из входного потока и запоминаем координаты точек в векторе [latex]а[/latex], к переменной [latex]sum[/latex] прибавляем эти координаты, умноженные на [latex]p[/latex].
Потом подсчитываем координаты центра тяжести системы и выводим эти координаты.
В цикле «[latex]for[/latex]» берем из вектора координаты одной из точек системы, считаем расстояние от центра тяжести до одной из точек системы и выводим это расстояние.

Ссылки
Код в ideone.com (C++)
Код в ideone.com (Java)
Условие задачи (с.117)

А282(а)

Антон Куперман
Антон Куперман

Latest posts by Антон Куперман (see all)

Задача

Даны действительные числа [latex]a_1,a_2, …,a_{2n}[/latex]. Получить:
[latex]a_1,a_{n+1},a_2,a_{n+2}, …,a_n,a_{2n}[/latex]

Тесты

Ввод
Вывод
1 2 3 4 5 6 7 8 9 10 1 6 2 7 3 8 4 9 5 10
8 25 3 7 8 3 25 7
5.5 6.025 2.387 1.0986 7.762 3.5958

5.5 1.0986 6.025 7.762 2.387 3.5958

Хороший код

Решение

Считываем действительные числа в первый вектор и узнаем [latex]n[/latex]. Затем поочередно вписываем элементы и элементы с измененным индексом в другой вектор, пока счетчик не будет равен [latex]n[/latex] и выводим полученный вектор, он и будет ответом.

Лучший код на C++

Лучший код на Java

 

Решение

В первом способе мы задавали два вектора, чем естественно увеличивали занимаемую память. C помощью функции insert() мы можем вставлять элементы в вектор, не используя дополнительных средств. Однако мы сталкиваемся с тем, что функция по определению вставляет в вектор константу из-за чего наш цикл не будет правильно работать. Чтобы изменять параметр вводимого элемента, заводим отдельный счетчик. Теперь каждый [latex]2*i+1[/latex]-ый шаг мы вставляем [latex]n+b+i[/latex]-ый элемент вектора. Проведем resize() вектора чтобы убрать лишние элементы и получим готовый результат.

Ссылки

  1. Хорошее решение на C++
  2. Лучшее решение на C++
  3. Лучшее решение на Java
  4. Условие в задачнике Абрамова(стр.120)

А282в

Станислав Коциевский
Станислав Коциевский

Latest posts by Станислав Коциевский (see all)

Задача

Даны действительные числа [latex]a_{1}, a_{2}, \cdots, a_{2n}.[/latex] Получить [latex]a_{1}+a_{2n}, a_{2}+ a_{2n-1}, \cdots, a_{n}+a_{n+1}.[/latex]

Тесты

Входные данные Выходные данные
 2 4 6 2 2 9 7 5 7 11 15 4
1 2 2 1 1 4
139 64 15 20 10 5 6 1 140 70 20 30
 111111 22222 33333 11 25 4 111115 22247 33344
15 7 6 9 24 13
2 2 4
138 56 78 3 141 134

Код программы

Решение задачи

Считаем все числа [latex]a_{1}, \cdots, a_{2n}[/latex] в ранее объявленный вектор, пока есть, что считывать. Поскольку мы используем класс vector и цикл  while (cin >> b)  и метод push_back(), в числе [latex]n[/latex] нет необходимости, а во входых данных присутствуют только сами числа [latex]a_{1}, \cdots, a_{2n}[/latex]. Далее, чтобы узнать количество элементов в векторе, будем использовать метод size(). Остается только выводить в цикле сумму двух текущих чисел, начиная с краев вектора и сдвигаясь в каждом витке на элемент ближе к центру вектора, пока не дойдем до центра.

Ссылки

Задача взята из задачника С. Абрамова;
Ссылка на код на ideone.com.