e-olymp 976. Флойд — существование

По некоторым причинам в статье рассматриваются две близкие задачи. Приведенный программный код содержит все необходимые функции, для решения обеих. Вставляя или убирая комментарии в строках 129, 130 можно выбрать, какую из задач будет решать программа.

e-olymp 974. Флойд 1
Полный ориентированный взвешенный граф задан матрицей смежности. Постройте матрицу кратчайших путей между его вершинами. Гарантируется, что в графе нет циклов отрицательного веса.

Пройденный тесты.

e-olymp 976. Флойд — существование

Дан ориентированный взвешенный граф. По его матрице смежности необходимо для каждой пары вершин определить, существует кратчайший путь между ними или нет.

   Кратчайший путь может не существовать по двум причинам:

  • Нет ни одного пути.
  • Есть путь сколь угодно маленького веса

Пройденный тесты.

Первая задача решается Алгоритмом Флойда-Уоршела. Поскольку отрицательных ребер в графе нет, и просят вывести кратчайший путь к каждой из вершин, то надо было всего лишь определить, что мы возьмем за бесконечность. Я выбрал [latex]10001[/latex], поскольку максимальное количество вершин [latex]100[/latex], а вес ребер не превышает [latex]100[/latex], соответственной максимально возможное расстояние не превосходит [latex]100*100 = 10000[/latex].

Во второй задаче была та же идея, но в данной ситуация у нас были ребра отрицательного веса. И у нас появилась проблема, могли существовать циклы отрицательной длины(с каждым проходом расстояние до вершин уменьшалось). Поскольку мы пользовались [latex]while[/latex] -ом, мы зацикливались. По этому необходимо было прекращать добавлять вершины, которую имеют отрицательную индексацию и порогом выбрано [latex]-102[/latex], поскольку цикл мог содержать отрицательные ребра, но при это быть положительным, по этому [latex]<0[/latex] нам не подошло. Дальше необходимо было вывести матрицу существования, методом [latex]way[/latex] мы выходили из вершины и определяли индексацию, пуская из всех вершин, мы можем построково выводить матрицу, только необходимо восстанавливать к исходному виду сам граф. В выводе мы определяли, существует путь и мал ли он. Существование проверялось тем, что эта вершина была посещена, а путь к вершине проверялся по индексу, если он меньше половины порога остановки[latex](-50)[/latex], то путь к этой вершине бесконечен.

 

link

А706 Алгоритм быстрого возведения в степень

Степень Входная матрица Результирующая матрица
2
0 1
2 3
2 3
6 11
3
0 1
2 3
6 11
22 39

Пусть даны квадратная матрица [latex]A[/latex] порядка [latex]m[/latex] и натуральное число [latex]n[/latex]; требуется найти [latex]A^{n}[/latex]. Алгоритм, основанный на непосредственной применении формулы [latex]A^{n} = A*A*A…*A [/latex]([latex]n[/latex] сомножителей), слишком разорителен. Например, [latex]A^{4}[/latex] экономичнее вычислять как [latex]A^{2^{2}}[/latex]. Идея одного достаточно экономичного алгоритма вычисления [latex]A^{n}[/latex] заключается в следующем: если  [latex]n = 2k[/latex], то [latex]A^{n} = (A^{2})^{k}[/latex]; если же [latex]n = 2k + 1[/latex], то [latex]A^{n} = (A^{2})^{k} * A[/latex]. Степень с показателем [latex]k[/latex] вычисляется с учетом этих же соображений. Итак, надо разделить [latex]n[/latex] на [latex]2[/latex] с остатком:[latex] n = 2k + l [/latex] [latex](0\le l\le 1[/latex]), потом это же проделать с [latex]k[/latex] и т.д. Эти действия приводят, как известно, к построению двоичной записи [latex]n[/latex]. Алгоритм, основанный на этой идее, состоит в том, что последовательно вычисляются [latex]A^{a_{0}}, A^{a_{1}*a_{0}}, …,A^{a_{l}*…*a_{0}}, a_{l}*…*a_{0}[/latex] — двоичная запись числа [latex]n[/latex]. Для этого вычисляется, цифра за цифрой, двоичная запись [latex]n[/latex] и, параллельно, степень за степенью,[latex]A^{(2^{0})}, A^{(2^{1})}, …[/latex] — каждая следующая степень получается из предыдущей возведением в квадрат. Подсчитывается произведение тех из вычисленных степеней, для которых соответствующая цифра двоичного представления равна 1. Например, запись [latex]9[/latex] в двоичной системе есть [latex]1001[/latex][latex](9 = 1*8 + 0*4 + 0*2 + 1)[/latex]; для вычисления [latex]A^{9}[/latex] достаточно найти [latex]A^{2},A^{4},A^{8},[/latex]([latex]3[/latex] умножения), а затем определить [latex]A*A^{8},[/latex] ([latex]1[/latex] умножение).

Преимущество этого алгоритма в сравнении с простейшим состоит в том, что простейший алгоритм требует числа умножений, растущего как линейная функция от [latex]n[/latex], а здесь число умножений грубо говоря, пропорционально количеству цифр числа [latex]n[/latex] или двоичному логарифму [latex]n[/latex]. Это преимущество весьма ощутимо при работе с матрицами (из-за трудоемкости каждого умножения), хотя, разумеется, этот алгоритм может быть использован и для вычисления степени любого числа.

Написать программу, реализующую предположенный алгоритм.

Суть алгоритма была описана в задании. Реализация была через свою структуру данных, такую как матрица. В ней мы определили умножение и присваивание, для удобства. Есть несколько конструкторов, но нужен по сути только самый первый, остальные для разыгравшейся фантазии. Инициализация при создании матрицы обязательна, поскольку может выдавать неправильный ответ в связи с забытым  в памяти мусором. Как перемножать матрицы можно узнать здесь. Нам понадобятся три матрицы, исходная, временная и матрица для ответа. Само двоичное представление удобно хранить в строке, поскольку идя по ней и находя [latex]1[/latex] мы можем домножить на  временную  матрицу матрицу ответ.

 

link.

e-olymp 4853. Кратчайший путь

Задан неориентированный граф. Найдите кратчайший путь от вершины a до вершины b.

Условие задачи на e-olimp. Cсылка на пройденный тесты.

Раз нам надо найти кратчайший путь путь, то будем использовать BFS- поиск в ширину. Мы будем постепенно просматривать вершины, внося в «план» те вершины с которыми они связанны и которые еще не внесены в «план». Для удобства я использовал вектора. В начале создаем вектор векторов, как бы это тавтологически не звучало, для этого я использовал вектор ответа, как объект, который добавлялся в вектор «graf», выступающий в роли графа, причем мы добавляем сразу к вершинам ([latex] graf[x].push_back(y);[/latex]) то есть [latex] x[/latex] — ая вершина получает связь с вершиной [latex] y[/latex], и наоборот, поскольку граф неориентированный. После чего, проверяем связанна ли начальная вершина хоть с кем — нибудь, если да, что работаем [latex] while [/latex] — ом, пока не наткнемся на начальную вершину, или все вершины в «плане» не будут пройдены. Если мы дошли до конечной вершины, то функция [latex] bfs[/latex] вернет [latex] 1[/latex], что запустит тело [latex] if [/latex]- а и мы начнем восстанавливать путь. Для этого мы заводили дополнительный вектор [latex] family[/latex], в который по мере добавления в «план», также добавлялись и вершины «отцы»(откуда пришла [latex] i [/latex] -ая вершина). Восстановленный путь записываем в вектор [latex] ans[/latex]. После чего [latex] while[/latex] прекращает свою работу и мы переходим к выводу результата. Если вектор ответа пуст, то выводим [latex]-1[/latex], иначе выводим количество вершин, участвующих в построении пути и сам путь.

link.

 

 

АА22

В строке убрать все запятые, пробелы и точки. Буквы нижнего регистра привести к верхнему.

input output Описание
./Task22 «he,.llo,. wo.,.,.,.,r.l. d» HELLOWORLD На входе поступает один параметр  в кавычках, вкотором есть пробел. Он убирается программой.
./Task22 2425s,Go.oD b24.ye 2425SGOODB24YE На входе поступает два параметра, пробел между параметрами убирается автоматически (пробел служил разделением между параметрами).
neznayka

А409

Дана действительная квадратная матрица порядка 9. Вычислить сумму тех из её элементов, расположенных на главной диагонали и выше неё, которые превосходят по величине все элементы, расположенные ниже главной диагонали. Если на главной диагонали и выше неё нету элементов с указанным свойством, то ответом должно служить сообщение об этом.

1 3 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1
1 1 1 1 1 4 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 5
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
Ответ 14
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 2 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
Ответ Нету элементов с такими свойствами

Находим наибольший из нижних элементов (элементы, расположенные ниже главной диагонали). Потом сравниваем каждый элемент верхнего множества (элементы, расположенные выше главной диагонали и на самой диагонали) с наибольшим элементов ([latex]bigger[/latex]) всех нижних элементов и если это число больше, то прибавляем это число к переменной [latex]summa[/latex].

link

Java

 

А810

Дано натуральное число [latex]n (n <= 1000)[/latex]. Записать это число русскими словами (семнадцать, двести пятьдесят три, тысяча и т. д. ).

Ход решения очень простой, читаем наше [latex]n[/latex] в тиме [latex]integer[/latex] и проверяем, если оно равно [latex]1000[/latex], то выводим ответ «тысяча», иначе берем число по модулю [latex]100[/latex] и присваиваем(дописываем) строке [latex]s[/latex] значение уже заранее описанного для [latex]n mod 100[/latex] ответа. Дальше проверяем так же по десяткам, здесь есть маленький нюанс, для чисел от [latex]10[/latex] до [latex]19[/latex] — эти числа имеют собственное названием, если же [latex](n mod 100)/10[/latex] от  [latex]2[/latex] до [latex]9[/latex], то дописываем в  [latex]s[/latex] соответствующее значение. И последний шаг — это запись едениц, мы берем все число по модулю  [latex]10[/latex] ([latex]n mod 10[/latex]) и дописываем то, что осталось.

 Ссылка на программу