E-Olymp 568. Средняя зарплата

Условие

На некотором предприятии работает некоторое количество работников, но не менее двух: директора и главного бухгалтера. Известно также, что количество работающих не превышает 1000. Зная заработные платы кождого работника определить среднюю зарплату на предприятии.

Входные данные

Заработные платы работников (не обязательно в одной строке) в гривнах.

Выходные данные

Средняя зарплата на предприятии в гривнах с точностью 2 знака после десятичной точки.

Тесты

Входные данные Выходные данные
1 100.50 300.50  200.50
2 800 950 600.25 200.50  637.69
3 1000 1200.50 790 600 980  914.10

Код

Решение

Для того чтобы посчитать среднюю зарплату, нам нужно знать сумму зарплат всех работников sum  и количество работающих n. Прибавляем к сумме зарплаты z  до тех пор, пока есть что считывать из вводных данных. В тоже время считаем количество раз, чтобы узнать, сколько всего работников на предприятии. Выводим среднее арифметическое и указываем количество цифр после запятой.

Related Images:

e-olymp 7824. Без повторений

Задача

В натуральном числе $A$ удалили некоторые цифры так, чтобы получить наибольшее натуральное число $B$ с разными цифрами. Какое это число?

Входные данные

Натуральное число $x \ (1 \leqslant x \leqslant 10^{100})$.

Выходные данные

Натуральное число $B$.

Тесты

Входные данные Выходные данные
1 575747 754
2 123231 321
3 314159265359 4192653
4 1092010 9210
5 112221332 213

Код

Нажмите здесь, чтобы выполнить этот код.

Решение

По условию, нам предстоит работать с натуральным числом, но для решения задачи более оптимально рассматривать его как строку с одним важным уточнением: ноль не может быть первым символом этой строки. Легко видеть, что в ответе должны фигурировать все цифры из «входных данных» — наибольшим будет число максимально возможного порядка. Следовательно, для каждого разряда числа нам нужна такая цифра, выбор которой не уменьшит разрядность в дальнейшем.

Рассмотрим пример: для числа $121323$ правильным ответом будет $213$.

Ход рассуждений следующий: поскольку в числе содержатся три цифры, ответ также будет трехзначным. Наибольшая цифра в числе — 3, следовательно, она должна быть первой цифрой ответа. Для выполнения этого условия придется «вычеркнуть» все предыдущие цифры, но тогда мы сможем получить лишь двухзначное число $32$. Следующим кандидатом является двойка, и этот выбор нас полностью устраивает, поскольку справа от нее есть остальные цифры «входного» числа. Записав в ответ $2$, рассмотрим число за ней: $1323$. Мы можем видеть, что двойка повторяется, однако в ответе ее быть уже не может по условию задачи. Отбросим ее за ненадобностью и рассмотрим получившееся число $133$. Для полученного числа нам необходимо выполнить те же операции, что и для предыдущего, а значит, мы столкнулись с задачей на динамическое программирование (о чем нам, правда, уже заботливо сообщил e-olymp прямо под условием). Рассуждения аналогичны: взять $3$ мы не можем, поскольку это вынудит нас отбросить $1$, что в результате даст нам число $23$, то есть даже меньшее, чем то, что мы получали в начале. Следовательно, добавляем к ответу $1$. Последнюю оставшуюся цифру можно сразу добавлять к ответу, поскольку сравнивать ее не с чем. Получаем искомый ответ — $213$.

Как и оговаривалось вначале, работать будем со строчным представлением числа. До объявления цикла в строке 22 выполняются подготовительные процедуры: создается множество с целью определения цифр, составляющих число, а затем массив, в который помещаются элементы множества в порядке убывания. В теле цикла проходим по всем элементам массива, пока не находим такой, справа от которого будут все остальные элементы. Здесь важно отметить две вещи: во-первых, меня не интересуют сами цифры, имеет значение лишь их количество в соответствующих множествах; во-вторых, поскольку справа от элемента могут находится ему идентичные, включаем его в срез строки и проверяем, можно ли опустить левую часть числа без ущерба количеству цифр в нем. Если да, то этот элемент добавляется в ответ и извлекается из массива для следующего прохода, а если нет — программа переходит к следующему по старшинству элементу.

Ссылки

Related Images:

e-olymp 7029. Поликлиника

Задача

На прием к доктору каждый день приходит много людей. Каждый пациент находится на приеме целое число минут, однако разных пациентов доктор может принимать разное количество времени. Доктор начинает прием в момент времени $t_1$ минут и заканчивает прием в момент времени $t_2$ минут. Это означает, что любой пациент независимо от того, сколько времени его будет принимать доктор, может зайти на прием в моменты $t_1, t_1 + 1, …, t_2 − 1$. Заходить на прием к доктору в другое время или тогда, когда доктор принимает другого пациента, запрещено. Если пациент приходит в поликлинику в момент $t$, он ожидает первый момент времени $s ≥ t$ такой, что на этот момент доктор ведет прием, причем уже успел осмотреть всех пациентов, которые пришли в поликлинику раньше, то есть до момента $t$. Если доктор не успевает осмотреть всех до конца приема, то остаток пациентов должен прийти на следующий день.

Зная, в какой момент доктор начинает и заканчивает прием, те, кто и когда придут на прием в конкретный день, а также сколько времени будет осматривать доктор каждого пациента, определите момент времени, в который необходимо прийти на прием Пете Пяточкину, чтобы гарантированно попасть в этот день к доктору, и при этом ожидать приема как можно меньше. В случае, если имеется несколько альтернативных вариантов такого момента времени, Вам необходимо определить наименьший (наиболее ранний) из них.

Входные данные

В первой строке приведено три числа: количество желающих попасть на прием n, время начала приема $t_1$ и время завершения приема $t_2$, больший чем $t_1$.

Во второй строке перечислены $n$ чисел $a_1, a_2, …, a_n$ — время, когда в поликлинику зашли соответственно первый, второй, $…, n$-ый желающий попасть к доктору. Числа $a_1, a_2, …, a_n$ попарно различны и расположены в порядке возрастания.

В третьей строке перечислены n чисел $b_1, b_2, …, b_n$ — время, необходимое доктору на осмотр соответственно первого, второго, $…, n$-го пациента.

Все входные числа натуральные. Количество пациентов $n$ не больше $10^5$, остальные числа не превосходят $10^9$.

Сутки на планете, где проживает Петя Пяточкин, длятся значительно дольше, чем на Земле, поэтому время начала приема $t_1$, время завершения приема $t_2$, а также числа $a_1, a_2, …, a_n$ и $b_1, b_2, …, b_n$ могут быть большими чем 1440 — количество минут в земных сутках.

Выходные данные

Вывести наименьший момент времени, когда Петя Пяточкин должен прийти в поликлинику, чтобы гарантированно попасть к доктору, подождав приема как можно меньше времени. Если Петя придет одновременно с другим человеком, его как младшего пропустят вперед.

Тесты

Входные данные Выходные данные
1 3 10 20
7 14 18
5 2 1
17
2 5 10 20
4 9 12 16 22
4 10 10 9 2
9
3 1 10 20
5
15
5

Код

Решение

Создаём два массива, удовлетворяющих условия, a — время прихода пациентов и b — время на их приём. Инициализируем все необходимые переменные: t_1 и t_2 — время приёма, t — время в которое Петя должен прийти, n- кол-во пациентов, i и j — счётчики, l — время между приходом пациента и началом его приёма.

Проверяем приходит ли первый пациент в самое начало приёма или после начала приёма, если в начало приёма — то приходим тогда.

В цикле while определяем минимальное время, в которое Петя может прийти на приём к врачу. Проверяем приходит ли следующий пациент до завершения приёма предыдущего. Если приходит во время завершения, или через некоторое время, то заходим после приёма предыдущего. (Нам уступают) Если нет, цикл продолжается, проверяет, является ли разница между началом приёма следующего пациента и временем его прихода меньше, чем предыдущая зафиксированная разницы. Если да — записывает её и время прихода данного пациента, и переходит к следующему пациенту.       

В конце проверяем, если время приёма ещё не окончено, пациенты все прошли и прийти раньше не получилось — приходим сразу в конце приёма последнего.

Related Images:

e-olymp 841. Спираль

Условие

Вывести квадрат, состоящий из $N \times N$ клеток, заполненных числами от $1$ до $N^{2}$ по спирали.

Входные данные

В первой строке находится единственное число $N (2 \leq N \leq 100)$.

Выходные данные

Выводится $N$ строк по $N$ чисел, разделённых пробелами. Не допускается начинать спираль в ином, кроме верхнего левого, углу, закручивать спираль против часовой стрелки или изнутри наружу.

Тесты

Входные данные Выходные данные
1 3 1 2 3
8 9 4
7 6 5
2 4 1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7
3 5 1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
4 10 1 2 3 4 5 6 7 8 9 10
36 37 38 39 40 41 42 43 44 11
35 64 65 66 67 68 69 70 45 12
34 63 84 85 86 87 88 71 46 13
33 62 83 96 97 98 89 72 47 14
32 61 82 95 100 99 90 73 48 15
31 60 81 94 93 92 91 74 49 16
30 59 80 79 78 77 76 75 50 17
29 58 57 56 55 54 53 52 51 18
28 27 26 25 24 23 22 21 20 19

Программный код

Решение

Для того чтобы решить эту задачу нам нужно определить способ заполнения. Первым делом, если $N$ — нечетное, то находим центр матрицы и заполняем его числом $N \times N $ a[(n / 2)][(n / 2)] = (n * n);. В условии написано, что “Не допускается начинать спираль в ином, кроме верхнего левого углу, закручивать спираль против часовой стрелки или изнутри наружу.”, то есть начинать мы будем с верхнего левого угла. Для этого мы сделаем цикл for(int i = 0; i < (n / 2); i++); , в котором сделаем 4 такта. Каждый такт заполняет определенную часть матрицы:

    • 1 такт – заполняет верхнюю грань слева направо;
    • 2 такт – заполняет правую грань сверху вниз;
    • 3 такт – заполняет нижнюю грань справа налево;
    • 4 такт – заполняет левую грань снизу вверх, как показано на рисунке ниже.

Выводим все как обычную матрицу, но с одним условием, после последнего элемента не должно стоять пробела, поэтому я вывел последний элемент отдельно и после него осуществил переход на новую строку.


Ссылки:
Задача на e-olymp
Код на OnlineGDB
Код на Ideone
Засчитанное решение на e-olymp

Related Images:

e-olymp 113. Шарики

Задача

У продавца воздушных шариков есть [latex]n[/latex] шаров. Каждый из них имеет некоторый цвет. Однако совсем недавно Три Толстяка издали указ, разрешающий торговать шариками какого-то одного цвета. Чтобы не нарушать закон, но при этом и не потерять прибыль, продавец решил перекрасить некоторые из своих шариков.

Напишите программу для определения минимального количества перекрашиваний.

Входные данные

В первой строке задано количество шаров [latex]n (1\leqslant n \leqslant 100000)[/latex]. Вторая строка состоит из [latex]n[/latex] целых чисел, в пределах от 1 до 9, определяющие цвета шаров (1 — синий, 2 — зеленый, 3 — голубой, 4 — красный, 5 — розовый, 6 — желтый, 7 — серый, 8 — черный, 9 — белый).

Выходные данные

Выведите минимальное количество шариков, которое необходимо перекрасить, чтобы все шарики были одного цвета.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 4  3 1 2 1 2
2 1 1 0
3 6 1 1 1 2 2 2 3
4 3 1 2 3 2
5 4 3 3 3 8 1

Код программы

Решение задачи

Для того, чтобы найти количество шариков, которые необходимо перекрасить, нужно узнать максимальное количество шариков одного цвета и из общего количества шариков n вычесть найденный максимум. Для нахождения максимума считываем номер цвета шара в цикле и увеличиваем соответствующую переменную cl на единицу. По окончанию цикла ищем максимальное количество шаров одного цвета и выводим n-max.

Ссылки

Related Images:

e-olymp 8373. Перевернутая башня

Задача

Вавилонцы решили построить удивительную башню — расширяющуюся к верху и содержащую бесконечное число этажей и комнат. Она устроена следующим образом — на первом этаже одна комната, затем идет два этажа на каждом из которых по две комнаты, затем идёт три этажа, на каждом из которых по три комнаты и так далее.

prb8373.gif

Эту башню решили оборудовать лифтом — и вот задача: нужно научится по номеру комнаты определять, на каком этаже она находится и какая она по счету слева на этом этаже.

Входные данные

Номер комнаты [latex]n (1\leqslant n \leqslant 2\cdot10^{9})[/latex].

Выходные данные

Выведите два целых числа: номер этажа и номер комнаты на этаже если считать слева.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 1 1 1
2 5 3 2
3 35 11 5
4 31 11 1
5 2000000000 1650964 845

Код программы

Решение задачи

Для решения данной задачи я воспользовался циклом while, в котором на каждой итерации, проверял будет ли значение выражения n-rooms_per_floor больше нуля. Если оно было больше нуля, то из n вычиталось количество комнат на текущем этаже, а если меньше нуля, то цикл прерывался. После изменений, выполненных в цикле, переменная n соответствует номеру комнату на этаже, а переменная floor, которая равна количеству вычитаний из n, соответствует этажу, на котором находится комната. К ней в конце необходимо добавить единицу, так как в этой переменной не учитывается «текущий» этаж.

Ссылки

Related Images:

e-olymp 1312. Шкаф

Задача

Размеры шкафа [latex] a \times b \times c [/latex]. Возможно ли его пронести через дверной проём с размерами [latex]x \times y[/latex]? Считается, что шкаф проходит в проем, если размеры, которыми его будут вносить сквозь дверь, не больше соответствующих размеров двери.

Входные данные

Целые числа [latex] a, b, c, x, y (1 ≤ a, b, c, x, y ≤ 100)[/latex].

Выходные данные

Вывести строку «YES«, если шкаф пронести возможно, и «NO» если нельзя.

Тесты

Ввод Вывод
1 4 5 6 10 20 YES
2 4 5 6 3 4 NO
3 12 3 4 5 6 YES
4 12 3 6 5 6 YES
5 12 3 7 5 6 NO

Код программы 

Либо

Без условных операторов

Решение задачи

Очевидно, шкаф будет будет проходить через дверной проём тогда, когда две любые его стороны (в силу того, что шкаф в пространстве возможно повернуть любой из сторон) будут меньше размеров проёма. Таким образом, путём сравнения мы можем сделать вывод относительно того, пройдёт ли шкаф через проём.

Ссылки

Related Images:

e-olymp 922. Сдвинь элементы

Условие задачи
Задан массив целых чисел длины [latex]n[/latex]. Сдвинуть элементы массива вправо циклически на [latex]1[/latex] шаг.

Входные данные
В первой строке задано количество элементов массива [latex]n[/latex] [latex](n ≤ 100)[/latex]. Во второй строке заданы сами элементы массива, значение каждого из которых по модулю не превышает [latex]100[/latex].

Выходные данные
В одной строке вывести [latex]n[/latex] чисел — новые значения элементов массива.

Continue reading

Related Images: