e-olymp 2663. Сортировка пузырьком

Условие

Определите, сколько обменов сделает алгоритм пузырьковой сортировки по возрастанию для данного массива.

Входные данные

В первой строке содержится количество элементов $n$ ($1 \leqslant n \leqslant 1000$) в массиве. Во второй строке — сам массив. Гарантируется, что все элементы массива различны и не превышают по модулю $10$$9$.

Выходные данные

Выведите одно число — количество обменов пузырьковой сортировки.

Тесты

Ввод Вывод
1 3
1 3 2
1
2 2
2 1
1
3 4
4 1 5 3
3
4 5
5 4 1 100000 7
4
5 6
6 5 4 3 2 1
15

Решение

Используем простой алгоритм пузырьковой сортировки: проходим по массиву циклом, если два элемента стоят не в том порядке, то меняем их местами. Так как задача состоит в том, чтобы вывести число обменов, при каждом обмене прибавляем к счётчику $1$. При каждом выполнении цикла по j ставится на место хотя бы 1 элемент, поэтому с каждым полным проходом его длина сокращается на $1$.

Код программы

Ссылки

решение на e-olymp
код на ideone

e-olymp 1704. Умная черепашка

Условие задачи

Имеется клетчатое поле размером $m\times n$. В левом нижнем углу сидит черепашка. Она умеет ходить только вправо или вверх. Перед тем как добраться до правого верхнего угла её заинтересовал вопрос: сколько существует способов добраться из исходной точки до правого верхнего угла?

Черепашка хотя и умная, но сама считать так много пока не умеет. Помогите черепашке найти ответ на свой вопрос.

Входные данные

Два натуральных числа $m$ и $n$, не превышающие 30.

Выходные данные

Вывести количество способов, которыми черепашка сможет добраться из левого нижнего угла в правый верхний.

Тесты

Ввод Вывод
1 4 5 10
2 3 14 105
3 11 17 5311735
4 20 21 68923264410
5 30 30 30067266499541040

Код программы (циклы)

Решение

Для нахождения количества способов, которыми черепашка сможет добраться из левого нижнего угла в правый верхний, мы воспользуемся формулой из комбинаторики: $\frac{\left(n+m-2\right)!}{(n-1)!\times(m-1)!}$.  Для того, чтобы избежать больших чисел,  делим на наибольший множитель знаменателя (пусть это будет $\left(n-1\right)!$ ). Получаем: $ \frac{n\times(n+1)\times…\times(n+m-2)}{1\times2\times…\times(m-1)}$. Домножаем числитель, пока он не делится на очередной сомножитель знаменателя. Если делится, то делим и переходим к следующему сомножителю знаменателя.

 

Код программы (динамическое программирование)

Решение

Заполним треугольную матрицу ответами для всех возможных значений $m$ и $n$ . Логика заполнения такая — если поле выглядит как полоска клеток, черепахе идти можно будет только вправо. Значит в первой строке (как и в столбце) будут все элементы равные 1. Поскольку в каждой клетке есть два варианта движения (вправо или вверх), остальные элементы будут заполняться как сумма ранее найденных значений для клеток справа текущей и над ней. Для диагональных элементов оба соседних расположены симметрично (то есть они равны), поэтому диагональный элемент будет равен удвоенному соседу справа. Решение намного быстрее, если нужно пройти много тестов, но тратит память на запоминание всех ответов.

Ссылки (циклы)

Ссылки (динамическое программирование)

e-olymp 8963. Наименьшие влево

Условие

Задан массив из [latex]n[/latex] целых чисел. Переместить все минимальные элементы в начало массива, не меняя порядок других.

Входные данные

В первой строке записано натуральное число [latex]n[/latex]. В следующей строке записаны [latex]n[/latex] целых чисел. Все числа по модулю не превышают [latex]100[/latex].

Выходные данные

Выведите элементы обновленного массива.

Тесты

Ввод Вывод
1 7
6 -3 -7 4 -7 -4 5
-7 -7 6 -3 4 -4 5
2 2
100 -100
-100 100
3 6
-2 -2 7 3 99 -2
-2 -2 -2 7 3 99
4 5
1 1 1 1 1
1 1 1 1 1

Решение

Вместо обычных массивов будем использовать векторы, чтобы было удобнее добавлять элементы в конец. Минимальный элемент можно найти с помощью простого цикла: если какой-либо элемент вектора меньше min, то min присваивается значение этого элемента, и так пока не найдено наименьшее число. Подсчитаем, сколько раз оно встречается в векторе. Столько же раз его нужно добавить в новый вектор. Наконец, переносим в v2 все оставшиеся элементы, не равные min.

Код программы

Ссылки

решение на E-olymp
код на ideone

e-olymp 123. Количество нулей у факториала

Задача

Найти количество нулей в конце записи факториала числа $n$.

Входные данные

Одно число $n$ $(1 \leqslant n \leqslant2\cdot10^9)$

Выходные данные

Количество нулей в конце записи $n!$

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
 1 1 0
 2 7 1
 3 12 2
 4 100 24
 5 306 75
 6 5000 1249

Код

Решение

Каждый нуль в конце искомого числа возникает от произведения чисел 2 и 5 — других вариантов нет. Очевидно, множителей 5 будет меньше множителей 2. Значит, количество нулей определяется исключительно количеством множителей-пятерок. Один такой множитель содержат числа 5, 10, 15, 20, 25, …, $n$ — всего их насчитывается $\frac{n}{5}$. Два множителя содержат числа 25, 50, …, $n$ всего их $\frac{n}{5^2}$.Три множителя содержат $\frac{n}{5^3}$.Складывая количество множителей с учетом их повторения, найдем общее их количество:

$\lfloor\frac{n}{5}\rfloor+\lfloor\frac{n}{5^2}\rfloor+\lfloor\frac{n}{5^3}\rfloor+\ldots+\lfloor\frac{n}{5^k}\rfloor$

Суммирование происходит до тех пор, пока очередное слагаемое не станет равным 0.

Ссылки

Формула разложения на простые множители

Условие задачи на e-olymp

Код на Ideone

Засчитанное решение на e-olymp 

 

e-olimp 7848. Переставить соседние

Задача

Задан массив из $n$ целых чисел. Переставьте соседние элементы массива ($a_{0}$ с $a_{1}$, $a_{2}$ с $a_{3}$ и так далее). Если элементов нечетное количество, то последний элемент следует оставить на своем месте.

Входные данные

В первой строке записано число $n$. В следующей строке записано $n$ целых чисел. Все числа по модулю не превышают $100$.

Выходные данные

Вывести обновленный массив.

Тесты

Входные данные Выходные данные
7
3 5 -7 7 5 -9 -4
5 3 7 -7 -9 5 -4
8
-9 81 27 -38 2 6 -56 -21
81 -9 -38 27 6 2 -21 -56
2
25 -76
-76 25
3
55 44 33
44 55 33
1
99
99

Код

Решение

Будем переставлять соседние элементы массива следующим образом: arr[1] с arr[0], arr[3] с arr[2] и так далее до конца массива (т.е. каждый нечетный по счету элемент меняем местами с предыдущим). При этом совершенно неважно, четное кол-во элементов или нечетное.

Ссылки

Условие задачи на E-Olymp
Код задачи на Ideone

e-olymp 8916. Первые парные

Первые парные

Программа должна ввести с консоли натуральное число [latex] n [/latex] и вывести в порядке возрастания [latex] n [/latex] первых четных натуральных чисел.

Входные данные

Натуральное число [latex] n [/latex].

Выходные данные

В одной строке через пробел [latex] n [/latex] первых четных натуральных чисел.

Тесты

Входные данные Выходные данные
1 3 2 4 6
2 8 2 4 6 8 10 12 14 16
3 5 2 4 6 8 10

Код программы

Решение

Решением этой задачи является вывод через пробел удвоенных чисел от 1 до [latex] n [/latex].

Ссылки

Условие на e-olymp
Решение на e-olymp
Решение на ideone.com

e-olymp 7847. Кількість різних елементів

Задача

Дано масив з N цілих чисел. Визначте, скільки в цьому масиві різних елементів.

Вхідні дані

В першому рядку записано число N. В наступному рядку записано N цілих чисел. Всі числа за модулем не перевищують 100.

Вихідні дані

Кількість різних елементів в масиві.

Тести

 

Вхідні дані Вихідні дані
1. 7
3 5 -7 7 5 -9 -4
6
2. 5
1 25 59 75 100
5
3. 6
1 2 3 1 2 4
4

Код 1

Решение

Ставим отметку числу как будто видим его впервые.
Далее задача пройти по всем предыдущим числам и проверить не встретится ли такое же число.
Если встретится, то отметку снимаем, а пройдя по всем предыдущим числам так и не встретив числа равного текущему, значит «видим его впервые» и отметка поставлена справедливо.
Считаем количество отметок.

Ссылки

Код 2

Ссылки

 

 

 

 

e-olymp 8663. Задача про множення

Задача

На уроці математики Байтик навчився множити, і почав застосовувати цю операцію з різними числами. Наприклад, розкладав число на цифри і знаходив добуток цифр. І тут він задумався, який найбільший добуток цифр серед натуральних чисел, що не перевищує [latex]N[/latex]. Допоможіть розв’язати задачу.

Вхідні дані

Одне число [latex]N(1\leqslant N\leqslant 2\times 10^{9})[/latex].

Вихідні дані

Максимальний добуток цифр серед чисел, що не перевищують [latex]N[/latex].

Тести

Вхідні дані Вихідні дані
57 36
1000 729
7999 5103
28994 10368
4876 2268

 

Код програми

Алгоритм

Складність задачі полягає в обмеженості у часі.

  1. Знайдемо добуток цифр заданого числа.
  2.  Змінемо останню цифру на [latex]9[/latex] та віднімемо [latex]1[/latex] від попереднього розряду. Визначаємо поточний добуток цифр отриманого числа. Повторюємо цю операцію з наступними розрядами числа.
  3. Порівнюємо поточний добуток з максимальним.

Приклад:

Приклад розкладу числа на різних етапах алгоритму:

 

Посилання

Задача на e-olymp
Зарахований розв’язок
Код на ideone

 

e-olymp 4439. Возведение в степень

Задача

Вычислить значение $a^b$.

Входные данные

Два натуральных числа $a$ и $b$.

Выходные данные

Выведите значение $a^b$, если известно что оно не превосходит $10^{18}$.

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
 1 1 100 1
 2 2 10 1024
 3 3 7 2187
 4 8 9 134217728
 5 10 10 10000000000
 6 100 9 1000000000000000000

Код

Решение

Для решения задачи создадим функцию «pow()», заметим, что для любого числа $a$ и чётного числа $b$ выполнимо очевидное тождество (следующее из ассоциативности операции умножения):
$$a^b = \left(a^2\right)^{\frac{b}{2}}= \left(a\cdot a\right)^{\frac{b}{2}}$$
Оно и является основным в методе бинарного возведения в степень. Действительно, для чётного $b$ мы показали, как, потратив всего одну операцию умножения, можно свести задачу к вдвое меньшей степени.
Осталось понять, что делать, если степень b нечётна. Здесь мы поступаем очень просто: перейдём к степени b-1, которая будет уже чётной:
$$a^b = a^{b-1} \cdot a$$
Итак, мы фактически нашли рекуррентную формулу: от степени $b$ мы переходим, если она чётна, к $\frac{b}{2}$, а иначе — к $b-1$.

Примечание

Задача требует использование быстрого алгоритма, так как прямое умножение $b$ раз для возведение в $b$-ю слишком медленно, из-за большого количества перемножений. Алгоритм быстрого возведения в степень — это предназначенный для возведения числа в натуральную степень за меньшее число умножений, чем это требуется в определении степени.

Ссылки

Условие задачи на e-olymp
Код на Ideone
Засчитанное решение на e-olymp

e-olymp 8674. Игра

Задача

Мурад и Ибрагим играют в следующую игру. Изначально дается число $1$. На своем ходу каждый игрок должен умножить текущее число на одно из целых чисел от $2$ до $9$ включительно. Цель состоит в том, чтобы получить число не меньше заданного целого числа $n$. Игрок, получивший такой номер первым, объявляется победителем. Мурад всегда начинает первым. Выясните, кто победит, если Мурад и Ибрагим будут играть оптимально.

Входные данные

Первая строка содержит одно число $t$ $(1 \leqslant t \leqslant 2500)$ — количество тестов. Каждая из следующих $t$ строк содержит одно целое число $n$ $(2 \leqslant n \leqslant 10^9)$.

Выходные данные

Для каждого теста выведите в отдельной строке $1$, если Мурад выиграет игру, и $2$ иначе.

Тесты

Входные данные

Выходные данные

1 4
9
10
1149729
999999999
1
2
2
1
2 3
6
163
1234567
1
2
2
3 3
42
100
1000
1
1
1

 

Код программы

Решение с циклом для каждого отдельного теста:

 

Решение без цикла для каждого отдельного теста:

 

Решение

Для начала заметим, что победит тот игрок, чей ход выпадет на число из промежутка $[\frac{n}{9},n)$, так как любое число из этого промежутка можно умножить на соответствующее целое число из $[2,9]$ и получить число не меньшее чем $n$. Назовем такой промежуток «зеленой зоной» (в общем виде будет $[\frac{2n}{18^k},\frac{n}{18^{k-1}})$, $k \in \mathbb {N}$). Тогда очевидно, что проиграет тот игрок, чей ход выпадает на число из промежутка $[\frac{n}{18},\frac{n}{9})$, так как при умножении числа из этого промежутка на любое целое число из $[2,9]$, приводит к тому, что получается число из «зеленой зоны». Назовем такой промежуток «красной зоной» (в общем виде будет $[\frac{n}{18^k},\frac{2n}{18^k})$, $k \in \mathbb {N}$). Получаем, что промежуток $(0,n)$ делится на «красные» и «зеленые зоны». Тогда задача сводится к нахождению вида «зоны» в которой находится $1$.

Используя в реализации цикл для каждого отдельного теста, получить результат достаточно несложно. Однако, для заданного $n$ можно получить исход игры используя лишь линейные вычисления.

Рассмотрим цепочку неравенств (учитывая, что $2 \leqslant n$ ):  $$\lfloor \log _{18} n \rfloor \leqslant \log _{18} n \leqslant \lceil  \log _{18} n \rceil$$

$$ 18^{\lfloor \log _{18} n \rfloor} \leqslant n \leqslant 18^{\lceil  \log _{18} n \rceil}$$

$$\frac{1}{18^{\lceil  \log _{18} n \rceil}} \leqslant \frac{1}{n} \leqslant \frac{1}{18^{\lfloor \log _{18} n \rfloor}}$$

$$\frac{n}{18^{\lceil  \log _{18} n \rceil}} \leqslant 1 \leqslant \frac{n}{18^{\lfloor \log _{18} n \rfloor}}$$

Из общего вида «красной зоны» видно, что левый ее конец это число вида $\frac{n}{18^k}$, значит $\frac{n}{18^{\lceil  \log _{18} n \rceil}}$ является левым концом «красной зоны», обозначим его как $l$. Тогда, $2l$ будет правым концом «красной зоны» исходя из её общего вида. Из полученного неравенства видно, что $1$ лежит между левыми концами соседних «красных зон». Получаем, что если $2l \leqslant 1$, то единица лежит в «зеленой зоне», а иначе — в «красной».

Ссылки

Условие задачи на e-olymp

Решение с циклом для каждого отдельного теста на ideone

Решение без цикла для каждого отдельного теста на ideone

e-olymp 2098. Переворачиватель

Условие

Заданы [latex]n[/latex] чисел. Выведите их в обратном порядке.

Входные данные

Сначала задано число [latex]n[/latex] ([latex]0 \lt n \lt 100[/latex]), за ним идут [latex]n[/latex] целых чисел.

Выходные данные

Выведите заданные [latex]n[/latex] чисел в обратном порядке.

Тесты

Ввод Вывод
1 7
2 4 1 3 5 3 1
1 3 5 3 1 4 2
2 1
5
5
3 10
1 1 1 9999 5 -1 7 3 0 9
9 0 3 7 -1 5 9999 1 1 1

Код программы

Решение

Введём переменную [latex]n[/latex], затем создадим массив из [latex]n[/latex] элементов. С помощью цикла for от [latex]0[/latex] до [latex]n[/latex] запишем в него числа. Теперь с помощью другого цикла от [latex]n-1[/latex] до [latex]-1[/latex] выводим их в обратном порядке.

e-olymp 8945. *Рамка 4

Условие задачи

Для заданных натуральных чисел $n$ и $m$ вывести прямоугольную рамку размером $n \times m$ из звездочек, заполненную пробелами как показано в примере.

Входные данные

Два натуральных числа $n$ и $m \; (n, m \leqslant 100)$.

Выходные данные

Выведите прямоугольную рамку размером $n \times m$.

Тесты

Входные данные Выходные данные
1 4 7
2 2 8
3 3 3
4  3 2

 

Программный код

Решение

Для получения рамки нужно заполнить первые и последние строки символом $*$ . Для этого в цикле будем проверять равенство  столбцов $0$,  $(m-1)$ и строк $0$ , $(n-1)$. В случае равенства выводить символ. Таким образом получим рамку.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 8546. Найдите сумму

Задача

По заданному натуральному числу $n$ вычислите сумму

$\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+ … +\frac{1}{n\cdot(n+1)}$

Входные данные

Одно натуральное число $n$ ($n$ $⩽$ $1000$).

Выходные данные

Выведите сумму с $6$ десятичными знаками.

Тесты

Входные данные Выходные данные
1 1 0.500000
2 5 0.833333
3 12 0.923077

Код программы

Решение

Для вычисления данной суммы необходимо сложить $n$ слагаемых вида

$\frac{1}{i \cdot (i + 1)}$

начиная с $i = 1$ и с шагом в единицу до $i = n$.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 8680. Чётные соседи

Условие задачи

Задана последовательность целых чисел. Подсчитать количество элементов, у которых чётные соседи.

Входные данные

В первой строке задано количество элементов последовательности $n$ $(n \leqslant 100)$. Во второй строке заданы сами элементы, значение каждого из которых по модулю не превышает $100$.

Выходные данные

Вывести в одной строке количество элементов последовательности с чётными соседями.

Тесты

Входные данные Выходные данные
1 6
1 2 3 4 5 6
2
2 9
3 6 3 5 2 9 1 2 5
0
3 3
2 1 2
1
4 6
13 24 54 66 44 77
2
5 4
100 224 666 222
2

Программный код

Решение

Идея решения задачи состоит в том, чтобы создать три переменные: $prev$ (предыдущий), $pres$ (настоящий, текущий) и $fut$ (будущий). Затем в цикле мы перезаписываем эти переменные т.е.: настоящий становится прошлым, будущий настоящим, а новый будущий мы читаем из cin. Так же, в ходе решения задачи обнаружилась проблема с чтением количества элементов. Допустим, если мы записали, что $n=6$, а дальше ввели $10$ элементов, то количество элементов с чётными соседями будет считаться для $10$ элементов. Чтобы избежать этого мы ограничиваем количество читаемых элементов с помощью счётчика i++ и цикла while.

Ссылки

e-olymp 8544. Квадраты чисел

Задача

Выведите квадраты всех натуральных чисел не больших [latex]n[/latex] в возрастающем порядке.

Входные данные

Одно натуральное число [latex]n[/latex] [latex](n \leqslant 10^9)[/latex]

Выходные данные

Выведите список квадратов всех натуральных чисел не больших [latex]n[/latex] в возрастающем порядке.

Тесты

Входные данные Выходные данные
1 1
16 1 4 9 16
93 1 4 9 16 25 36 49 64 81
100 1 4 9 16 25 36 49 64 81 100

Код

Решение

Воспользуемся циклом, в котором заведем переменную [latex]i[/latex]  и будем перечислять числа [latex]1, 4, 9, …, i^2[/latex], пока [latex]i^2[/latex] не будет больше [latex]n[/latex]. Выводим последовательно квадраты натуральных чисел в одной строке.

Ссылки

Задача на e-olymp
Код решения на ideone

e-olymp 3873. Счастливый номер

Условие

Подавляющее большинство людей стараются найти закономерности, которые приносят удачу! Зуб акулы в ухе папуаса — к удачной рыбной ловле. Черная кошка, которая передумала перебегать вам дорогу — к отмене контрольной. Любимая игрушка у компьютера — к удаче в командном чемпионате по программированию.

Для большинства студентов несомненным является тот факт, что номер трамвайного билетика приносит удачу. А уж если такой билетик достался перед экзаменом, пятерка обеспечена! Главное тут — четко понимать, что такое счастливый билет. И почему, спрашивается, многие считают, что только номер автобусного или троллейбусного билета может приносить удачу своему владельцу?! Чем хуже, скажем, номер паспорта или номер кассового чека в гастрономе? Главное, чтобы номер был счастливым!

Витька всегда считал, что удачу приносят такие номера, в записи которых цифры идут в неубывающем порядке. Например, счастливыми являются номера $11111$ или $12345$. Даже номер $00000$ — тоже счастливый!

Интересно, сколько счастливых номеров существует для заданной длины записи числа? Напишите программу, которая это количество вычислит.

Входные данные

Входной файл содержит единственное целое число $N$, $(1 \leq N \leq 64)$, $N$ — длина числа, для которой нужно вычислить количество счастливых номеров.

Выходные данные

Вывести одно число — количество счастливых номеров.

Тесты

Входные данные Выходные данные
1 2 55
2 4 715
3 3 220

Программный код

Решение

Для того, чтобы решить эту задачу, я начертил таблички (рис. 1.1) для всех вариантов $2$ значного числа и $1$ значного (рис. 1.2). Для $3$ значного аналогично, только рядов будет $3$. Из комбинаторики мы помним формулу: $C_n^m=\frac{n!}{m!(n-m)!}$, из которой мы получим: $(n + 9)! \over {9! \times n!}$. Потому-что из картинки мы видим что при 1 значном числе количество вариантов равно $10$. В коде я сразу сокращал на $n!$, чтобы не получались огромные числа.

рис 1.1

рис 1.2

Ссылки:
Задача на e-olymp
Код на OnlineGDB
Код на Ideone
Засчитанное решение на e-olymp

e-olymp 8671. Представимые суммой квадратов

Задача

Найдите все числа от $1$ до $n$, представимые в виде суммы двух квадратов различных натуральных чисел.

Входные данные

Одно натуральное число $n$ $( n \leqslant 10000)$.

Выходные данные

Выведите в одной строке в возрастающем порядке все числа от $1$ до $n$, представимые в виде суммы двух квадратов различных натуральных чисел.

Тесты

Входные данные  Выходные данные
1 5 5
2 10 5 10
3 13 5 10 13
4 20 5 10 13 17 20
5 30  5 10 13 17 20 25 26 29

Код программы

Решение

Для решения задачи создадим функцию check(), которая будет выводить число, если его можно представить в виде суммы двух квадратов. В функции перебираем всевозможные варианты $i$ и считаем $j$ для каждого $i$ по формуле $j=\sqrt{n-i^2}$, до тех пор пока не найдем целое (не равное $i$ ) $j$ или же не переберем все $i$. Просматриваем до $ i \cdot i < n $,  потому что сумма двух квадратов не может превышать заданного числа. Формулу получили выразив $j$ из исходной формулы $(i^2+j^2=n)$.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 8283. Музыка

Задача

Малыши и малышки очень любили музыку, а Гусля был замечательный музыкант. У него были разные музыкальные инструменты, и он часто играл на них. Их было много, поэтому он развесил их на стенах своей комнаты. Инструмент, расположенный справа от входной двери имел номер $1$, дальше они нумеровались по кругу, а последний инструмент с номером $n$ висел слева от этой двери.

Малыши часто просили его научить играть на каком-нибудь инструменте. Гусля не отказывал, но сначала предлагал взять инструмент с первым номером, а если ученику хотелось играть на другом, то он выбирал шестой следующий по кругу и так далее. Напишите программу, которая определяла номер попытки, с которой ученик мог получить желаемый инструмент с номером $k$.

Например, если количество инструментов $n = 11$, то последовательность будет следующей: $(1) 2 3 4 5 6 (7) 8 9 10 11 1 (2) 3 4 5 6 7 (8) 9 10 11 1 2 (3) 4 5$ …, то есть при $k = 3$ инструмент с номером $3$ можно было бы получить с пятой попытки.

Входные данные

Два натуральных числа $n$ и $k$ $(1 \leqslant k \leqslant n \leqslant 100)$.

Выходные данные

Вывести номер попытки, в который «выпадал» инструмент с номером $k$. Если это никогда не происходило, следует вывести $0$.

Тесты

Входные данные Выходные данные
1 11 3 5
2 6 2 0
3 13 13 3
4 9 8 0
5 5 5 5

Код

Решение

Для решения задачи нам необходимо рассмотреть ряд натуральных чисел, начиная с единицы и прибавляя каждый раз $6$. С помощью операции деления с остатком мы можем реализовать алгоритм нахождения номера музыкального инструмента. Однако логика решения изменяется в зависимости от введенных пользователем данных. Имеется два случая:

  1. Если пользователь вводит разные числа.
  2. Если пользователь вводит одинаковые числа.

В первом случае мы рассматриваем две ситуации:
1) если пользователь вводит количество инструментов $6$, то единственным решением будет инструмент под номером $1$, так как Гусля выбирает инструменты через $6$ штук по кругу;
2) если количество инструментов не равно $6$ то мы реализовываем алгоритм нахождения номера путем деления с остатком, а именно: если текущее число при делении на количество инструментов не дает в остатке искомый номер, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае мы нашли число попыток.
Еще здесь, так же, как и во втором случае, есть подводный камень: если мы уже сделали какое-то количество попыток и текущее число при делении на количество инструментов дает в остатке $1$, мы никогда не попадем на нужный нам номер инструмента.

Во втором случае мы также рассматриваем две ситуации:
1) если количество инструментов делится нацело на $2$, то нам никогда не выпадет нужный инструмент;
2) если текущее число при делении на количество инструментов не дает в остатке $0$, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае ответ найден.
Также не забываем про подводный камень, указанный выше.

Ссылки

  • Условие задачи на e-olymp
  • Код программы на ideone.com
  • Засчитанное решение на e-olymp

e-olymp 1327. Ладьи на шахматной доске

Задача

Ещё в детстве маленького Гарика заинтересовал вопрос: а сколькими способами на шахматной доске размером [latex]n \times n[/latex] можно расставить [latex] n [/latex] ладей так, чтобы они не били друг друга. Он очень долго решал эту задачку для каждого варианта, а когда решил — бросил шахматы.

А как быстро Вы управитесь с этой задачкой?

Входные данные

Размер шахматной доски — натуральное число, не превышающее [latex] 1000 [/latex].

Выходные данные

Выведите ответ, найденный Гариком.

Тесты

Входные данные Выходные данные
2 2
10 3628800
500 122013682599111006870123878542304692625357434280319284219241
358838584537315388199760549644750220328186301361647714820358
416337872207817720048078520515932928547790757193933060377296
085908627042917454788242491272634430567017327076946106280231
045264421887878946575477714986349436778103764427403382736539
747138647787849543848959553753799042324106127132698432774571
554630997720278101456108118837370953101635632443298702956389
662891165897476957208792692887128178007026517450776841071962
439039432253642260523494585012991857150124870696156814162535
905669342381300885624924689156412677565448188650659384795177
536089400574523894033579847636394490531306232374906644504882
466507594673586207463792518420045936969298102226397195259719
094521782333175693458150855233282076282002340262690789834245
171200620771464097945611612762914595123722991334016955236385
094288559201872743379517301458635757082835578015873543276888
868012039988238470215146760544540766353598417443048012893831
389688163948746965881750450692636533817505547812864000000000
000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000
999 402387260077093773543702433923003985719374864210714632543799
910429938512398629020592044208486969404800479988610197196058
631666872994808558901323829669944590997424504087073759918823
627727188732519779505950995276120874975462497043601418278094
646496291056393887437886487337119181045825783647849977012476
632889835955735432513185323958463075557409114262417474349347
553428646576611667797396668820291207379143853719588249808126
867838374559731746136085379534524221586593201928090878297308
431392844403281231558611036976801357304216168747609675871348
312025478589320767169132448426236131412508780208000261683151
027341827977704784635868170164365024153691398281264810213092
761244896359928705114964975419909342221566832572080821333186
116811553615836546984046708975602900950537616475847728421889
679646244945160765353408198901385442487984959953319101723355
556602139450399736280750137837615307127761926849034352625200
015888535147331611702103968175921510907788019393178114194545
257223865541461062892187960223838971476088506276862967146674
697562911234082439208160153780889893964518263243671616762179
168909779911903754031274622289988005195444414282012187361745
992642956581746628302955570299024324153181617210465832036786
906117260158783520751516284225540265170483304226143974286933
061690897968482590125458327168226458066526769958652682272807
075781391858178889652208164348344825993266043367660176999612
831860788386150279465955131156552036093988180612138558600301
435694527224206344631797460594682573103790084024432438465657
245014402821885252470935190620929023136493273497565513958720
559654228749774011413346962715422845862377387538230483865688
976461927383814900140767310446640259899490222221765904339901
886018566526485061799702356193897017860040811889729918311021
171229845901641921068884387121855646124960798722908519296819
372388642614839657382291123125024186649353143970137428531926
649875337218940694281434118520158014123344828015051399694290
153483077644569099073152433278288269864602789864321139083506
217095002597389863554277196742822248757586765752344220207573
630569498825087968928162753848863396909959826280956121450994
871701244516461260379029309120889086942028510640182154399457
156805941872748998094254742173582401063677404595741785160829
230135358081840096996372524230560855903700624271243416909004
153690105933983835777939410970027753472000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000

Программный код

Алгоритм решения

Алгоритм решения данной задачи заключается в том, что нужно вычислить [latex]n! = 1\times 2\times 3\times \cdots\times n [/latex] , используя длинную арифметику ( умножение длинного числа на короткое ).
Иллюстрация для восьми ладей:

В коде № 1 разбиваем вектор на ячейки по три цифры. Но, некоторые ячейки могут иметь менее чем три цифры. С учетом того, что перенос может состоять не из трех цифр, следует выводить результат так: cout << setw(3) << setfill('0') << res[i];.
В коде № 2 разбиваем строку посимвольно.

Детали реализации

  • Безусловно, для использования векторов и строк нам понадобятся соответствующие  библиотеки: #include <vector> и #include <string>.
  • Для вывода данных в коде № 1 стоит подключить библиотеку #include <iomanip>.

Ссылки :
Задача на e-olymp
Код № 1 на ideone
Код № 2 на ideone
Засчитанное решение № 1
Засчитанное решение № 2

e-olymp 8669. Все делители

Условие задачи

Найдите все делители натурального числа $n$.

Входные данные

Одно натуральное число $ n ( n \leqslant 10^9 ) $.

Выходные данные

Выведите в возрастающем порядке все делители числа $n$.

Тесты

Входные данные Выходные данные
1 10 1 2 5 10
2 36 1 2 3 4 6 9 12 18 36
3 455 1 5 7 13 35 65 91 455
4 38965 1 5 7793 38965
5 999999 1 3 7 9 11 13 21 27 33 37 39 63 77 91 99 111 117 143 189 231 259 273 297 333 351 407 429 481 693 777 819 999 1001 1221 1287 1443 2079 2331 2457 2849 3003 3367 3663 3861 4329 5291 6993 8547 9009 10101 10989 12987 15873 25641 27027 30303 37037 47619 76923 90909 111111 142857 333333 999999
6 1000000000 1 2 4 5 8 10 16 20 25 32 40 50 64 80 100 125 128 160 200 250 256 320 400 500 512 625 640 800 1000 1250 1280 1600 2000 2500 2560 3125 3200 4000 5000 6250 6400 8000 10000 12500 12800 15625 16000 20000 25000 31250 32000 40000 50000 62500 64000 78125 80000 100000 125000 156250 160000 200000 250000 312500 320000 390625 400000 500000 625000 781250 800000 1000000 1250000 1562500 1600000 1953125 2000000 2500000 3125000 3906250 4000000 5000000 6250000 7812500 8000000 10000000 12500000 15625000 20000000 25000000 31250000 40000000 50000000 62500000 100000000 125000000 200000000 250000000 500000000 1000000000

Код

Код №1

Код №2

Решение

Можно заметить, что делитель и частное взаимодополняют друг друга. Мы найдем делители, потом частные этого выражения. Так как частные также являются делителями. Значит последовательность делителей в порядке возрастания можно разделить на две части. Создадим два цикла для нахождения этих двух частей:

  1. В первом цикле проверяем каждое натуральное число от $1$ до $\sqrt n$. В коде №1 выводим числа, если они являются делителями. В коде №2 помещаем их в стек и выводим;
  2. Во втором цикле в коде №1 делим заданное число $n$ на все делители и выводим. В коде №2 делим заданное число $n$ на все элементы стека и выводим.

Примечание: для избежания повторения в коде №2, удаляем $\sqrt n$ из стека.

Ссылки

Условие задачи на E-olymp

Код №1 на Ideone

Код №2 на Ideone

Засчитанный код №1 на E-olymp

Засчитанный код №2 на E-olymp