e-olymp 7213. Шашка на кубе

Условие

Поверхность куба отрезками, параллельными рёбрам куба, разделена на квадратные клетки, длина сторон которых в $l$ (нечетное натуральное число) раз меньше длины ребра куба. Шашку передвигают за один ход из клетки на произвольную смежную с ней клетку (что имеет с данной общую сторону).

Создайте программу, которая вычислит, сколькими различными способами шашка может попасть за $m$ ходов из клетки в центре одной грани на клетку, расположенную в центре смежной грани.

Входные данные

Содержит натуральные числа $l$ и $m$ ($l < 52$, $m < 200$).

Выходные данные

Вывести искомое количество способов.

Тесты

l m вывод
3 3 1
3 4 0
3 5 25
51 199 4009263689513240276071196173369495212494629453793821392879244551766927964742684514532573281589075237363501397360
3 199 11954860546705755218324706261555627152268568460810054501274297031890136116190373877274924800908756150285132065690107399

Код

Решение

Из условия можно понять, что задача про специфического вида граф, по которому движется шашка. Его вершинами являются клетки на гранях куба, а дуги лежат между клетками с общими границами. Очевидно количество путей за $m$ шагов до любой точки в графе будет равняться сумме количества путей за $m-1$ шагов ко всем соседним вершинам, то есть мы можем получать решение задачи для $m$ шагов из решения меньшей задачи для $m-1$ шагов, из чего можно понять что это задача на динамическое программирование.
Для решения создадим массив со всеми вершинами и будем хранить в нём количество путей к каждой из них на i-ом шаге. Удобнее всего задать такой массив как 6 числовых матриц размером $ l \times l$, по одной на каждую грань куба.

Раскладка шести граней куба с переходами между границами

Соседство будем определять, прибавляя или отнимая единицу от одной из координат клетки в матрице, например $(x-1, y)$ всегда будет соседом $(x, y)$, не считая крайних случаев, когда $x-1$ будет меньше нуля. Такие ситуации в коде обрабатывает функция FixNeighbor(...), в которой прописаны все подобные крайние случаи.

Если посмотреть на правильный ответ к пятому примеру, становится видно, что на больших значениях ответы на тесты превышают все стандартные целочисленные типы данных, поэтому для полного решения необходимо использовать длинную арифметику. В программе она реализована в виде структуры LongNum, логика работы которой взята отсюда.

Также, посмотрев на куб, можно заметить что так как мы всегда начинаем в середине грани, то количество путей до клеток на смежных с начальной гранях идентично и нам не нужно просчитывать их всех, достаточно хранить и просчитывать одну боковую грань, как на втором рисунке.

Оптимизированный вариант хранения куба

Так как для получения значения клетки через $i$ шагов нужны значения всех её соседей через $i-1$ шагов, а для получения значения соседей через $i$ шагов нужно значение клетки через $i-1$ шагов, нам не хватит только одного массива для перезаписи, надо использовать минимум два для хранения предыдущего и нынешнего состояния. В программе это реализовано с помощью булевой переменной flag — сначала мы вычисляем следующее состояние на основании 0-ого массива ( flag), записывая результат 1-ый ( !flag), а потом инвертируем значение переменной на противоположное и массивы в алгоритме меняются местами.

Ссылки

Related Images:

2 thoughts on “e-olymp 7213. Шашка на кубе

    • Добавил метки и расширил первый абзац в решении с обоснованием тегов.

Добавить комментарий