e-olymp 1326. В хоккей играют настоящие…

Задача

prb1326 Лесные жители решили провести хоккейный турнир между $N$ командами. Сколькими способами могут быть распределены комплекты золотых, серебряных и бронзовых медалей, если одно призовое место может занять только одна команда?

Входные данные

В единственной строке расположено единственное натуральное число $N$, не превышающее 100.

Выходные данные

Единственное число — искомое количество способов.

Тесты

Ввод Вывод
1 1 1
2 2 2
3 3 6
4 5 60
5 56 166320
6 100 970200

Код

Решение

Чтобы рассчитать количество способов воспользуемся формулой размещения из комбинаторики $A_N^k = \frac{N!}{(N−k)!}$, где $k = 3$, так как существует всего 3 призовых места и следовательно комплекты медалей можно распределить $N$$(N — 1)$$(N — 2)$ способами, при $N >= 3$. При $N < 3$ существует всего $N$ способов распределения, так как команд меньше чем призовых мест.

Ссылки

e-olymp
ideone

e-olymp 990. 12345

Задача

Вывести цифры 1, 2, 3, 4, 5 каждое в отдельной строке.

Входные данные

Входные данные отсутствуют.

Выходные данные

Выведите цифры 1, 2, 3, 4, 5 каждое в отдельной строке как показано в примере.

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1
2
3
4
5

Код. Вариант 1

Решение

В решении используется функция $endl$ для перехода на новую строку. Также эта фунция очищает поток, то есть является гарантией того, что данные попадут непосредственно в поток в нужное время.

Код. Вариант 2

Решение

В решении используется символ перехода на новую строку ‘\n’.

Ссылки

e-olymp
ideone(Решение 1)
ideone(Решение 2)