Ю2.28

Павел Загинайло
Павел Загинайло

Latest posts by Павел Загинайло (see all)

Задача.

Вклад. Банк предлагает 3 вида срочных вкладов: на 3 месяца под [latex]p_{1}[/latex]%, на 6 месяцев под [latex]p_{2}[/latex]% и на год под [latex]p_{3}[/latex]%. Какой из вкладов наиболее выгоден для вкладчика?

Тесты:

[latex]p1[/latex] [latex]p2[/latex] [latex]p3[/latex] Вывод программы
0 0 0 Нет наиболее выгодного вклада из трех
10 10 10 Первый вклад выгоднее
10 10 50 Третий вклад выгоднее
50 10 10 Первый вклад выгоднее
5 20 20 Второй вклад выгоднее

 

Код программы:

 

 

 

Алгоритм решения.

Для решения этой задачи я пользовался следующей формулой: [latex]B = A(1 + \frac{P}{100\%})[/latex], где [latex]B[/latex] — будущая стоимость, [latex]A[/latex] — текущая стоимость, [latex]P[/latex] — процентная ставка за расчетный период, [latex]n[/latex] — количество расчетных периодов. В программе я ее представил в другом виде, так как для сравнения выгодности вкладов одинаковой суммы, саму сумму можно не учитывать.

Код на ideone.com

Ю1.8

Царев Николай Александрович
Царев Николай Александрович

Latest posts by Царев Николай Александрович (see all)

Задача:

Среднегодовая производительность труда

За первый год производительность труда на предприятии возросла на [latex]p[/latex]1[latex]%[/latex], за второй и третий — соответственно на [latex]p[/latex]2[latex]%[/latex] и  [latex]p[/latex]3[latex]%.[/latex] Найти среднегодовой прирост производительности (в процентах).

P1(%) P2(%) P3(%) Р (среднегодовой прирост  производительности)  (%)
50 68 34 50.03
0 25 75 29.81
-25 25 78 18.61
0 -25 0 -9.14
1.4 43 0.7 13.45

Код программы на С++

Код программы на Java

Алгоритм задачи предельно прост.

Пользователь задает нам три показателя прироста производительности на предприятии, за каждый год соответственно.

Предположим, что производительность труда в году, предшествующему увеличению, это  [latex]a[/latex], тогда в следующем году прирост будет вычисляться по формуле  [latex]a\cdot \left( \frac { { p }_{ n } }{ 100 } +1 \right)[/latex], где  [latex]{ p }_{ n }[/latex] это показатель прироста производительности за соответствующий год.

Учитывая, что для каждого следующего года показатель [latex]a[/latex] это производительность за предыдущий год, мы получим формулу:

[latex]p=\left( \sqrt [ 3 ]{ (\frac { { p }_{ 1 } }{ 100 } +1)\cdot (\frac { { p }_{ 2 } }{ 100 } +1)\cdot (\frac { { p }_{ 3 } }{ 100 } +1) } -1 \right) \cdot 100[/latex].

Подставляя в формулу соответствующие значения мы с легкостью получим результат.

Ю1.21

Карагяур Мілан Сергійович
Карагяур Мілан Сергійович

Latest posts by Карагяур Мілан Сергійович (see all)

Задача: Владелец автомобиля приобрел новый карбюратор, который экономит 50% топлива, новую систему зажигания, которая экономит 30% топлива, и поршневые кольца, экономящие 20% топлива. Верно ли, что его автомобиль теперь сможет обходиться совсем без топлива? Найти фактическую экономию для произвольно заданных сэкономленных процентов.

e1 e2 e3 f
50 30 20 72 Пройдено.
10 34 72 83.37 Пройдено.
0 0 0 0.00 Пройдено.
23.7 47.1 10.2 63.72 Пройдено.

 

Нет, машина не будет обходится совсем без топлива.

Предположим, что в машине 100 л топлива. Вычислим сколько топлива экономит карбюратор в процентах, то есть от 100 отнимем нужное количество процентов и получим количество топлива которое не экономится в процентах. Найдем экономию топлива от этого значения и получим сколько экономят топлива кольца, и так далее. В итоге просуммируем все экономии топлива в процентах и получим общую экономию.

Код программы на Java: