A271

Задача.
Даны действительные числа [latex]a_{1},\ldots,a_{k}[/latex]. Получить [latex]\sqrt{\frac{\sum\limits_{i=1}^{k}(a_{i}-\tilde{a})^{2}}{k-1}},[/latex] где [latex]\tilde{a}=\frac{1}{k}\sum\limits_{i=1}^{k}a_{i}.[/latex]

Тесты

input [latex]\tilde{a}[/latex] [latex]\sqrt{\frac{\sum\limits_{i=1}^{k}(a_{i}-\tilde{a})^{2}}{k-1}}[/latex] Комментарий
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8  

4.4712

 

Пройдено
2 8 3 4 5 6 7 9 11 15 17 12 19 7 5 1 7 9 19 14 9  

6.35834659

Пройдено
3 3 3 3 3 0 0 0 5 5 5 15 15 15 15 6 5.8554 Пройдено

Решение

  1. Заполняем вектор действительными числами
  2. Считаем их сумму (с помощью цикла прибавляем каждый элемент вектора).
  3. Находим значение [latex]\tilde{a}[/latex].
  4. Находим сумму под корнем второй формулы через цикл (аналогично п.2)
  5. Производим необходимые арифметические операции для нахождения значения второй формулы.
  6. Вывод значений.
    Ссылка на код

ML21

Задача. Найти сумму членов арифметической прогрессии a, a+d, a+2d \dots, a+(n-1)d по данным значениям a, d, n.

Тесты:

[latex]a[/latex] [latex]d[/latex] [latex]n[/latex] [latex]Sn[/latex]
8 657 0 0
5 0 2 10
5 8 1 5
0 5565 88 21302776

Код:

Алгоритм.

В данной программе я воспользовался формулой суммы арифметической прогрессии. А именно [latex] S_{n} = \frac{a_{1} + d(n — 1)}{2} * n [/latex], где [latex]a_{1}[/latex] — первый член арифметической прогрессии, [latex]d[/latex] -разница арифметической прогрессии и [latex]n[/latex] — номер последнего члена суммы. Программа же просто выводит результат данных вычислений на экран.