e-olymp 7258. Числовые операции

Условие

На доске записано число $1$. Каждую секунду Петя может провести над числом одну из двух операций: либо прибавить к числу $1$, либо произвольным образом переставить цифры числа (но так, чтобы на первом месте оказался не ноль). После этого Петя вытирает с доски старое число и записывает вместо него получившееся.

Задание
Напишите программу, которая для заданного натурального числа определяет, за какое наименьшее число операций Петя может, начав с единицы, дойти до этого числа.

Входные данные

Первая строка входного файла содержит число $T (1 \leqslant T < 10^4),$ которое задает количество чисел во входном файле, для которых требуется найти ответ. В последующих $T$ строках задано по одному натуральному числу $N_i$,$2\leqslant N_i < 10^9$, $1 \leqslant i \leqslant T$. Известно, что среди чисел $N_i, 1 \leqslant i \leqslant T$, нет одинаковых.

Выходные данные

Выходной файл должен содержать $T$ чисел по одному в строке — в $i$-й строке должно быть записано наименьшее количество секунд, которое понадобится истратить Пете, чтобы, начав с единицы, записать на доске соответствующее число $N_i$.

Тесты

Ввод Вывод
1 3

3

955

21

1

48

12

2 4

137

318

3028

300
39

40

71

50

Код

Решение

Количество цифр в числе никогда не уменьшается, а может увеличиться только при добавлении к числу, состоящее только из девяток и единицы. Поэтому, для достижения числа $N$ сначала нужно дойти до числа $10$, потом до чисел $99$ и $100$ и так далее, пока количество цифр в числе не будет таким, какое требуется.
Наименьшее количество операций, необходимое для того, чтобы перейти от числа $10^{n-1}$ до заданного $n$ -значного числа $N$ можно посчитать следующим образом:
1. Если число $N$ содержит хотя бы одну цифру, отличную от нуля, кроме первой, то количество операций можно посчитать по формуле summa(N) + nonzero(N) edinica(N) - 1, где summa(N) — сумма цифр числа, nonzero(N) — количество цифр, отличных от нуля, на всех позициях числа $N$, кроме последней, edinica(N) — число, которое равно единице, если хотя бы на одной позиции числа $N$, кроме последней, есть единица, или равна нулю, если единиц на этих позициях нет.
2. Если все цифры числа $N$, кроме первой, нулевые, а первая цифра больше единицы, то количество операций можно посчитать по формуле summa(N-1)+nonzero(N-1) edinica(N-1).

Доказательство формул

Для дальнейшего удобства обозначим перестановку цифр числа через $\Rightarrow$.
Число $N$ -заданное число, число $n$ -количество цифр числа $N$. Если $n=1$, $N=7$, то для того, чтобы дойти от единицы до заданного числа, потребуется $N-1$ операций. В нашем случае $6$ операций
($1+1=2,
2+1=3,

6+1=7$)
Если $n\geq2$, то для этого достаточно привести пример цепочки, подсчитывающая количество операций, которая число $10^{n-1}$ превращает в $N$. Но вместо прямого порядка действий будем делать обратный эквивалентный. $N \Rightarrow 10^{n-1}$. За одну операцию мы можем или уменьшить число на единицу, или переставить в нем цифры так, чтобы на первом месте оказался не нуль. Могут возникнуть следующие случаи:
1. Если $N=10^{n-1}$, то количество операций равно summa(N) + nonzero(N) - edinica(N) - 1 $= $ $0$.
Например, возьмем число $1000$. Сумма цифр $= 1$, количество ненулевых цифр $= 1$, количество единиц $= 1$, соответственно значение $= 1+1-1-1 =0$.

2. Если $N!=10^{n-1}$ и первая цифра числа $N$ равна единице, то проводим следующие операции:
Сначала отнимаем от числа $N$ столько единиц, чтобы последняя цифра стала нулем, далее переставим местами последнюю цифру с какой-нибудь другой, отличной от нуля, кроме первой, и опять отнимем количество единиц, чтобы последняя цифра стала нулевой. Повторять будем до тех пор, пока все цифры, кроме первой, не станут нулями.
Например, возьмем число $137$.
$137-1=136$, $136-1=135$, $135-1=134$, $134-1=133$ ,$133-1=132$ ,$132-1=131$, $131-1=130$ ,$130 \Rightarrow 103$ , $103-1=102$, $102-1=101$, $101-1=100$
Количество операций $= 11$. Проверяем по формуле. summa(137)=11, nonzero(137)=2, edinica(137)=1. Итого получаем $11+2-1-1=11$

3. Если первая цифра числа $N$ больше единицы, но хотя бы на одной позиции числа, кроме последней, есть единица, то проводим следующие операции:
Сначала уменьшаем последнюю цифру, пока она не станет нулем, затем переставляем цифры: поставим на место первой цифры единицу, а первую цифру сделаем последней, а нуль, который стоял в конце числа, поставим на место бывшей первой цифры. После этого будем действовать согласно алгоритму пункта №2.
Например, число $318$.
$318-1=317$, $317-1=316$, $316-1=315$, $315-1=314$, $314-1=313$, $313-1=312$, $312-1=311$, $311-1=310$, $310 \Rightarrow 103$, $103-1=102$, $102-1=101$, $101-1=100$
Итого $12$ операций. Просчитываем по формуле summa(318)+nonzero(318)-edinica(318)-1.
Получаем $12+2-1-1=12$.

4. Если ни на одной из позиций числа $N$, кроме, возможно, последней, нет единиц, но в числе есть хотя бы одна ненулевая цифра, кроме первой, то проводим следующие операции:
Последнюю цифру делаем нулевой, переставляем последний нуль с любой ненулевой цифрой, кроме первой, пока на последнем месте не окажется последняя ненулевая цифра (не считая первую), последнюю ненулевую уменьшаем не до нуля, а до единицы, переставим единицу с первой цифрой, новую последнюю цифру сделаем нулевой.
Например, число $3028$.
$3028-1=3027$, $3027-1=3026$, $3026-1=3025$, $3025-1=3024$, $3024-1=3023$, $3023-1=3022$, $3022-1=3021$, $3021-1=3020$, $3020 \Rightarrow 3002$, $3002-1=3001$, $3001 \Rightarrow 1003$, $1003-1=1002$, $1002-1=1001$, $1001-1=1000$
Получаем $14$ операций. Проверяем по формуле summa(3028)+nonzero(3028)-edinica(3028)-1 $= 13+2-0-1=14$.

5. Если первая цифра числа $N$ больше единицы, а все другие цифры — нулевые, то проводим следующие операции:
Отнимем от числа $N$ единицу, а дальше будем использовать один из раннее написанных алгоритмов в пунктах 2-4.
Например, число $300$.
$300-1=299$, $299-1=298$, $298-1=297$, $297-1=296$, $296-1=295$ $=$ … $291-1=290$, $290 \Rightarrow 209$, $209-1=208$ $=$ … $202-1=201$, $201 \Rightarrow 102$, $102-1=101$, $101-1=100$
Итого $22$ операции. summa(300-1)+nonzero(300-1)-edinica(300-1) $= 20+2-0=22$.

6. Подсчет операций от $1$ до $10^{n-1}$.
Для того, чтобы перейти от числа $10^{n-1}$ к $10^n$, понадобится число $10^n – 1$,которое равно $k$. По предыдущим алгоритмам, понадобится:
summa(k)+ nonzero(k) edinica(k) - 1 $=$ $9 \cdot n + (n-1) -0 -1=10 \cdot n – 2$ операций, где $n > 1$.
Если $n=1$, то количество операций $= 10 \cdot n – 2 =8$.

Количество операций можно посчитать по формуле $(5 \cdot n -1) \cdot (n – 1)$ ,где $n$- количество цифр заданного числа.

Ссылки

e-olymp 3738. Простая сортировка

Задача

Дан массив целых чисел. Ваша задача — отсортировать его в порядке неубывания.

Входные данные

В первой строке входного файла содержится число $N (1 \leqslant N \leqslant 100000)$ — количество элементов в массиве. Во второй строке находятся N целых чисел, по модулю не превосходящих $10^9$.

Выходные данные

В выходной файл надо вывести этот же массив в порядке неубывания, между любыми двумя числами должен стоять ровно один пробел.

Тесты

Входные данные Выходные данные
1

10

1 8 2 1 4 7 3 2 3 6

1 1 2 2 3 3 4 6 7 8
2

9

7 39 8 1 4 2 65 10 5

1 2 4 5 7 8 10 39 65
3

12

-3 7 -7 -11 40 -30 25 30 2 7 -30 1

-30 -30 -11 -7 -3 1 2 7 7 25 30 40

Код

 

Решение

Для решения задачи используем функцию сортировки из библиотеки algorithm. Для начала создаем одномерный массив, потом с помощью цикла записываем значения в массив. С помощью функции sort(), сортируем и записываем изменения в массив. Потом с помощью цикла выводим результат.

Ссылки

e-olymp 7254. Отрезки

Задача

Петя очень любит игрушки в форме геометрических фигур. Недавно он заметил, что среди его игрушек нет ни одного треугольника. Это очень огорчило Петю, поэтому он отправился в ближайший магазин с целью покупки новенького треугольника. В магазине Пете сказали, что все треугольники уже давно раскупили, но в наличии есть [latex]N[/latex] прямых отрезков.

Отрезки пронумерованы последовательными натуральными числами, начиная с единицы. Отрезок номер [latex]i[/latex] характеризуется двумя числами — длиной [latex]L_i[/latex] и ценой [latex]C_i[/latex]. Петя очень умный, поэтому знает, что желаемый треугольник он может сложить из трех отрезков. Более того, наш герой знает, что треугольник возможно сложить только из таких трех отрезков, среди которых длина любого отрезка строго меньше суммарной длины двух других. Итак, мальчик решил купить ровно три таких отрезка. Разумеется, он хочет сэкономить как можно больше денег на мороженое, поэтому стремится потратить как можно меньше денег на покупку треугольника.

Задание

Напишите программу, которая по информации об отрезках найдет наименьшую стоимость трех отрезков, из которых мальчик может сложить треугольник, либо определит, что это сделать невозможно.

Входные данные:

В первой строке входного файла записано единственное число [latex]N[/latex] — количество отрезков. В следующих [latex]N[/latex] строках записана информация о самих отрезках. Каждая такая строка содержит соответствующие [latex]L_i[/latex] [latex](1 \leqslant L_i \leqslant 10^9)[/latex] и [latex]C_i[/latex]. Цены образуют перестановку чисел от [latex]1[/latex] до [latex]N[/latex], то есть являются попарно различными натуральными числами, не превосходящими [latex]N[/latex].

Выходные данные:

Выходной файл должен содержать единственное число — минимальную стоимость трех отрезков, из которых можно сложить треугольник, либо «-1» (кавычки для наглядности) в том случае, если выбрать ровно три таких отрезка невозможно.

Тесты

Входные данные Выходные данные
1 4
1 1
2 2
3 3
4 4
9

Код

 

 

Решение

Для начала запишем все отрезки в массив в виде структур. Отсортируем их по цене в порядке возрастания, чтобы позже иметь возможность «отсекать» слишком дорогие отрезки. Далее мы начинаем перебирать все возможные тройки отрезков. На первом уровне цикла ставим условный оператор. Если на [latex]n[/latex]-ой итерации цикла будет отрезок с ценой больше текущей наименьшей цены треугольника, то мы можем выходить из массива и выводить текущую минимальную стоимость, т.к. все последующие отрезки будут дороже (пользуемся сортировкой и тем, что цены отрезков образуют перестановку от [latex]1[/latex] до [latex]N[/latex]). Далее на втором и третьем уровнях цикла мы также перебираем все отрезки от дешевых к дорогим и при обнаружении тройки отрезков, цена которых меньше текущей минимальной, записываем их в переменную [latex]cheapest[/latex]. При этом на втором уровне цикла проверяем, не больше ли сумма цен двух отрезков текущей минимальной, чтобы не проверять лишние тройки.

Ссылки

e-olymp 7023. Тасование Ханафуда

Задача

Есть несколько способов, чтобы перетасовать колоду карт. Одним из таких примеров является перетасовка для японской карточной игры «Ханафуда». Ниже показано, как ее выполнить.

Card shuffling example

Имеется колода из $n$ карт. Начиная с $p$-ой карты сверху, $c$ карт вынимаются и кладутся на вершину колоды, как показано на рисунке. Такую операцию назовем операциею срезки.

Напишите программу, которая моделирует перетасовку Ханафуда, и выведет номер карты, которая в конце будет находиться наверху.

Входные данные

Состоит из нескольких тестов. Каждый тест начинается со строки, содержащей два натуральных числа $n$ $(1 ≤ n ≤ 50)$ и $r$ $(1 ≤ r ≤ 50)$ — количество карт в колоде и количество операций срезания.

Каждая из следующих $r$ строк описывает операцию срезания. Они выполняются в перечисленном порядке. Каждая строка содержит два натуральных числа $p$ и $c$ $(p + c ≤ n + 1)$. Начиная с $p$-ой карты сверху, c карт вытаскиваются и кладутся наверх.

Последняя строка содержит два нуля.

Выходные данные

Для каждого теста вывести в отдельной строке номер верхней карты после выполнения тасования. Считайте, что сначала карты пронумерованы числами от $1$ до $n$ снизу доверху.

Тесты

Входные данные Выходные данные
1 5 2
3 1
3 1
10 3
1 10
10 1
8 3
0 0
4
4

Код

Решение

Решить данную задачу можно несколькими способами. Первая мысль, которая мне пришла в голову — поместить все числа в строку и совершать тасование с помощью методов работы со строками, такими как $erase$ и $substr$. В течении решения стало понятно, что просто записывать числа в строку будет неправильно, так как возможны и двузначные числа. Так как неизвестно какое число будет следующим (однозначное или двузначное), особенно после нескольких перестановок, появляется идея хранить в строке числа, разделенные между собой запятыми. И в дальнейшем, если мне понадобится вытащить 5 карт из колоды начиная с 17, то я дойду до 16 запятой и возьму все, что хранится после нее, до 17+5 запятой и переставлю эти числа в начало строки (наверх колоды). Также в процессе поиска позиции необходимой запятой мне нужно получить ее позицию в строке, поэтому я решил создать структуру $Comma$, которая будет хранить номер запятой в строке и ее позицию относительно всех символов в данной строке, чтобы использовать ее во время каждой перестановки.

Таким образом, получаем рабочее решение данной задачи.

P.S. Новые решения согласно советам преподавателя

Ссылки